Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ther Adv Urol ; 11: 1756287219837771, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956688

RESUMEN

OBJECTIVE: The objective of this study was to examine the impact of dehydrated human amnion/chorion membrane (dHACM) allografts on prostate and bladder cancer growth in the setting of residual disease and positive surgical margins. MATERIALS AND METHODS: A commercially available version of dHACM was used. Cytokines were identified and quantified, followed by comparative analysis of cell growth in two different human cell lines: prostate cancer (LNCaP) and bladder cancer (UM-UC-3), in vitro and in vivo. Tumor growth between the two groups, membrane versus no membrane implant, was compared and immunohistochemistry studies were conducted to quantify CD-31, Ki-67, and vimentin. A Student's unpaired t-test was used to determine statistical significance. RESULTS: The UM-UC-3 and LNCaP cells grew quicker in medium plus 10% serum and dHACM extract than in the other media (p = 0.03). A total of 28 distinct cytokines were found in the extract, 11 of which had relatively high concentrations and are associated with prostate and bladder cancer tumor progression. In vivo LNCaP model, after 10 weeks, the median tumor volume in the membrane group was almost threefold larger than the partial resection alone (p = 0.01). Two weeks after resection, in the UM-UC-3 model, the membrane group reached fourfold larger than the partial resection without membrane group (p < 0.01). In both groups, the expression of CD-31 and Ki-67 markers were similar and showed no statistical significance (p > 0.05). It was only in the LNCaP tumors that vimentin expression was significantly higher in the group without membrane compared with the membrane group (p = 0.008). CONCLUSION: The use of dHACM after partial tumor resection is related to faster tumor relapse and growth in prostate and urothelial cancer in vivo models, showing a potential risk of rapid local recurrence in patients at high risk of positive margins.

2.
Cell Stem Cell ; 21(6): 747-760.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29198940

RESUMEN

Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis.


Asunto(s)
Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Histamina/metabolismo , Células Mieloides/metabolismo , Animales , Médula Ósea/efectos de los fármacos , Trasplante de Médula Ósea , Citometría de Flujo , Células Madre Hematopoyéticas/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones , Células Mieloides/efectos de los fármacos
3.
Oncoimmunology ; 6(3): e1290034, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28405523

RESUMEN

The colorectal tumor microenvironment contains a diverse population of myeloid cells that are recruited and converted to immunosuppressive cells, thus facilitating tumor escape from immunoediting. We have identified a genetically and functionally distinct subset of dynamic bone marrow myeloid cells that are characterized by histidine decarboxylase (HDC) expression. Lineage tracing in Hdc-CreERT2;R26-LSL-tdTomato mice revealed that in homeostasis, there is a strong bias by HDC+ myeloid cells toward the CD11b+Ly6Ghi granulocytic lineage, which was accelerated during azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colonic carcinogenesis. More importantly, HDC+ myeloid cells strongly promoted colonic tumorigenesis, and colon tumor progression was profoundly suppressed by diphtheria toxin A (DTA)-mediated depletion of HDC+ granulocytic myeloid cells. In addition, tumor infiltration by Foxp3+ regulatory T cells (Tregs) was markedly impaired following HDC+ myeloid cell depletion. We identified an HDC+ myeloid-derived Cxcl13/Cxcr5 axis that mediated Foxp3 expression and Treg proliferation. Ablation of HDC+ myeloid cells or disruption of the Cxcl13/Cxcr5 axis by gene knockdown impaired the production and recruitment of Tregs. Cxcl13 induction of Foxp3 expression in Tregs during tumorigenesis was associated with Stat3 phosphorylation. Overall, HDC+ granulocytic myeloid cells affect CD8+ T cells directly and indirectly through the modulation of Tregs and thus appear to play key roles in suppressing tumoricidal immunity.

4.
PLoS One ; 11(4): e0152940, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27045955

RESUMEN

During a survey of clinical rectal prolapse (RP) cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1tm1Fbg (Lpd-/-) was documented. Upon further investigation, the Lpd-/- colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS). Lpd-/- mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd-/- mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd-/- mice with RP compared to EHS-infected, but clinically normal (CN) Lpd-/- animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd-/- mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd-/- male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.


Asunto(s)
Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Neoplasias del Recto/genética , Animales , Daño del ADN , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias del Recto/patología
5.
Oncotarget ; 6(32): 32966-79, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26429861

RESUMEN

Food allergy can influence the development of colorectal cancer, although the underlying mechanisms are unclear. While mast cells (MC) store and secrete histamine, immature myeloid cells (IMC) are the major site of histidine decarboxylase (HDC) expression, the enzyme responsible for histamine production. From our earlier work, we hypothesized that histamine is central to the association between allergy and colorectal carcinogenesis through its influence on the MC-MDSC axis. Here, we show that in wild type (WT) mice, ovalbumin (OVA) immunization elicits a typical TH2 response. In contrast, in HDC-/- mice, the response to OVA allergy is skewed towards infiltration by IL-17 expressing MCs. This response is inhibited by histamine treatment. The HDC-/- allergic IL-17-expressing MCs promote MDSC proliferation and upregulation of Cox-2 and Arg-1. OVA allergy in HDC-/- mice increases the growth of colon tumor cells in both the MC38 tumor cell implantation model and the AOM/DSS carcinogenesis model. Taken together, our results show that histamine represses IL-17-expressing MCs and their subsequent activation of MDSCs, attenuating the risk of colorectal cancer in the setting of food allergy. Targeting the MC-MDSC axis may be useful for cancer prevention and treatment in patients, particularly in those with food allergy.


Asunto(s)
Neoplasias Colorrectales/inmunología , Hipersensibilidad/inmunología , Interleucina-17/biosíntesis , Mastocitos/inmunología , Células Mieloides/inmunología , Secuencia de Aminoácidos , Animales , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Histamina/farmacología , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Células Mieloides/patología , Ovalbúmina/inmunología , Ovalbúmina/farmacología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA