Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 28(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110684

RESUMEN

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer exhibits early relapses, poor prognoses, and high recurrence rates. Herein, a JNK-targeting compound has been developed that may be of utility in HER2-positive mammary carcinoma. The design of a pyrimidine-and coumarin-linked structure targeting JNK was explored and the lead structure PC-12 [4-(3-((2-((4-chlorobenzyl)thio) pyrimidin-4-yl)oxy)propoxy)-6-fluoro-2H-chromen-2-one (5d)] was observed to selectively inhibit the proliferation of HER2-positive BC cells. The compound PC-12 exerted DNA damage and induced apoptosis in HER-2 positive BC cells more significantly compared to HER-2 negative BC cells. PC-12 induced PARP cleavage and down-regulated the expression of IAP-1, BCL-2, SURVIVIN, and CYCLIN D1 in BC cells. In silico and theoretical calculations showed that PC-12 could interact with JNK, and in vitro studies demonstrated that it enhanced JNK phosphorylation through ROS generation. Overall, these findings will assist the discovery of new compounds targeting JNK for use in HER2-positive BC cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Femenino , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Cumarinas/farmacología , Pirimidinas , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral
2.
Bioengineering (Basel) ; 10(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829653

RESUMEN

In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with 2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited the viability of MCF-7 cells with an IC50 value of 9.2 µM. A dose- and time-dependent inhibition of STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound 3f was added in vitro. Calculations using density functional theory showed that the title compounds HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively. Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating that these structures may be an alternative synthon to target STAT3 signaling in BC.

3.
Biomedicines ; 11(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672680

RESUMEN

Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction. Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds 5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM, respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1 in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM and 7.16 µM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as better structures to develop CDK1 inhibitors against human breast cancer cells.

4.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566199

RESUMEN

A number of uracil amides cleave poly (ADP-ribose) polymerase and therefore novel thiouracil amide compounds were synthesized and screened for the loss of cell viability in a human-estrogen-receptor-positive breast cancer cell line. The synthesized compounds exhibited moderate to significant efficacy against human breast cancer cells, where the compound 5e IC50 value was found to be 18 µM. Thouracil amide compounds 5a and 5e inhibited the catalytical activity of PARP1, enhanced cleavage of PARP1, enhanced phosphorylation of H2AX, and increased CASPASE 3/7 activity. Finally, in silico analysis demonstrated that compound 5e interacted with PARP1. Hence, specific thiouracil amides may serve as new drug-seeds for the development of PARP inhibitors for use in oncology.


Asunto(s)
Neoplasias de la Mama , Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato , Amidas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Piperazina , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ribosa , Tiouracilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA