Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10356, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710732

RESUMEN

Herbicide use may pose a risk of environmental pollution or evolution of resistant weeds. As a result, an experiment was carried out to assess the influence of different non-chemical weed management tactics (one hoeing (HH) at 12 DAS followed by (fb) one hand weeding at 30 DAS, one HH at 12 DAS fb Sesbania co-culture and its mulching, one HH at 12 DAS fb rice straw mulching @ 4t ha-1, one HH at 12 DAS fb rice straw mulching @ 6 t ha-1) on weed control, crop growth and yield, and economic returns in direct-seeded rice (DSR). Experiment was conducted during kharif season in a split-plot design and replicated thrice. Zero-till seed drill-sown crop (PN) had the lowest weed density at 25 days after sowing (DAS), while square planting geometry (PS) had the lowest weed density at 60 DAS. PS also resulted in a lower weed management index (WMI), agronomic management index (AMI), and integrated weed management index (IWMI), as well as higher growth attributes, grain yield (4.19 t ha-1), and net return (620.98 US$ ha-1). The cultivar Arize 6444 significantly reduced weed density and recorded higher growth attributes, yield, and economic return. In the case of weed management treatments, one HH at 12 DAS fb Sesbania co-culture and its mulching had the lowest weed density, Shannon-weinner index and eveness at 25 DAS. However, one hoeing at 12 DAS fb one hand weeding at 30 DAS (HH + WH) achieved the highest grain yield (4.85 t ha-1) and net returns (851.03 US$ ha-1) as well as the lowest weed density at 60 DAS. PS × HH + WH treatment combination had the lowest weed persistent index (WPI), WMI, AMI, and IWMI, and the highest growth attributes, production efficiency, and economic return.


Asunto(s)
Productos Agrícolas , Oryza , Malezas , Control de Malezas , Oryza/crecimiento & desarrollo , Control de Malezas/métodos , Malezas/crecimiento & desarrollo , Malezas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Herbicidas/farmacología , Producción de Cultivos/métodos
2.
Carbohydr Polym ; 317: 121042, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364943

RESUMEN

Quick leaching of urea fertilizer encourages different coatings, but achieving a stable coating without toxic linkers is still challenging. Here, the naturally abundant bio-polymer, i.e., starch, has been groomed to form a stable coating through phosphate modification and the support of eggshell nanoparticles (ESN) as a reinforcement agent. The ESN offers a calcium ion binding site for the phosphate to cause bio-mimetic folding. This coating retains hydrophilic ends in the core and gives an excellent hydrophobic surface (water contact angle 123°). Further, the phosphorylated starch+ESN led the coating to release only ∼30 % of the nutrient in the initial ten days and sustained for up to 60 days to show ∼90 % release. The stability of the coating has been attributed to its resistance to major soil factors viz., acidity and amylase degradation. The ESN also increases elasticity, cracking control, and self-repairing capacity by serving as buffer micro-bots. The coated urea enhanced the yield of rice grain by ∼10%.


Asunto(s)
Almidón , Urea , Preparaciones de Acción Retardada/química , Urea/química , Almidón/química , Suelo , Fertilizantes/análisis , Fosfatos
3.
ACS Omega ; 7(6): 4832-4839, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187303

RESUMEN

Nitrogen fertilizers, namely urea, are prone to leaching that causes inefficiency in crop production and environmental pollution; hence porous particles were explored for slow release. Nevertheless, discrete particles add cost; therefore, jute cellulose has been tested as twine to tether silica together for reusability. On the other hand, silica serves as an exoskeleton to give pore memory property to cellulose, which otherwise is susceptible to loss of porosity during irrigation. The composite shows ∼70% more absorption capacity in the fifth cycle than the fiber without silica coating. The urea release kinetics shows only <1/3 and 3/4 of urea release from the jute-silica composite compared to naked porous silica and cellulose, respectively. The slow and sustained release of fertilizer from the composite results in a continuous increase in the chlorophyll content in rice crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA