Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 18556, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535688

RESUMEN

The paper presents comprehensive mineralogical and geochemical characteristics of Dominican amber-bearing sediments from Siete Cañadas, Hato Mayor Province of the Eastern Mining District (EMD) in the Cordillera Oriental. The characteristics of rocks collected from the borehole in Siete Cañadas area (EMD) were compared with petrography of coaly shales from La Cumbre in the Northern Mining District (NMD). The mineralogy of the rocks was determined using transmitted and reflected light microscopy, scanning electron microscopy, Powder X-ray diffraction and Fourier Transform Raman Spectroscopy. Biomarker analyses by the gas chromatography-mass spectrometry were used to trace the genetic source and transformation stage of organic matter hosted in the core sediments. In this study, the characteristics of rocks from La Cumbre were supplemented with the petrographic data from our studies reported earlier. Based on the findings, it has been concluded that the basins in the investigated parts of the EMD and NMD regions were likely characterized by different, isolated palaeosettings. Transformation and maturation of terrigenous material were affected by locally occurring physicochemical conditions. In both amber deposits, the sedimentation of clastic and organic material proceeded in the presence of marine conditions. In case of the La Cumbre deposit (NMD area), the sedimentation underwent probably in the conditions of the lagoon environment, a shallow maritime lake or periodically flooded plain that facilitated organic matter decomposition and carbonation from meta-lignite to sub-bituminous coal (random reflectance of coal-Rro = 0.39%). In the Siete Cañadas (EMD region), the sedimentation took place in a shallow saltwater basin, where terrigenous material was likely mixed with material found in situ (fauna fossils, carbonate-group minerals) to form the mudstones enriched in bituminous substance of low maturity. The organic matter found in the rocks from both deposits is of mixed terrestrial/marine origin and was deposited in the presence of low oxygen concentration and reducing and/or dysoxic conditions.

2.
Sci Rep ; 11(1): 10307, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986391

RESUMEN

Light-blue barite from Jebel Ouichane in Morocco forms blade-like tabular crystals (up to ca. 10 cm) with superb transparency and lustre and represents one of the most spectacular gem-quality worldwide. The barite is hosted by iron-ore-bearing skarns, developed within Jurassic-Cretaceous limestones, and occurs in close spatial association with calcite. The crystals have their cores enriched in Sr and contain abundant monophase (liquid) fluid inclusions of primary and pseudosecondary origin. The barite probably precipitated slowly at a relatively low supersaturation and under the control of a surface reaction precipitation mechanism. However, there were some episodes during its formation with a fast growth rate and the coupled dissolution and recrystallization processes. A combination of fluid inclusion data and stable δ18O value for barite (+ 6.71‰ VSMOW) suggests that low-salinity barite-forming solutions resulted from the mixing of strongly-diluted meteoric waters (enriched in light oxygen isotope) with magmatic-hydrothermal fluids under low-temperature conditions (< 100 °C). Meanwhile, the mineralizing fluids must have been enriched in Ba, Sr, Ca, Mg, and other elements derived from the alteration of carbonate and silicate minerals in sedimentary and igneous rocks. The coupling between sulphur and oxygen isotope data (+ 16.39‰ VCDT and + 6.71‰ VSMOW, respectively) further suggests that barite crystallized in steam-heated environment, where SO42- derived from magmatic-hydrothermal SO2 reacted with sulphates that originate from the oxidation of H2S under near-surface conditions.

3.
Sci Rep ; 10(1): 18283, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106522

RESUMEN

Fossil resins from Miocene coal deposit (Sarolangun mine, Jambi Province, Sumatra, Indonesia) have been analysed using spectroscopic methods: Raman Spectroscopy (RS), Fourier Transform-Infrared Spectroscopy (FT-IR), 13C Nuclear Magnetic Resonance (13C NMR), Fluorescence Spectroscopy (FS), and Gas Chromatography-Mass Spectrometry (GC-MS) in order to describe their diagnostic features. Simultaneously, glessite, a fossil resin from Upper Oligocene Bitterfeld deposit (Saxony-Anhalt, Germany), originating from similar botanical sources (i.e. angiosperms) was tested with the same analytical methods in order to find similarities and differences between the resins. The resins differ in colour, transparency and amounts of inclusions (resins from Sumatra-yellow, and transparent with few inclusions; glessite-brown-red, translucent with wealth of inclusions). In general, the IR and RS spectra of these resins are very similar, probably because the glessite colour-changing additives can be very subtle and non-observable in the infrared region. The RS spectra revealed also a slight difference in intensity ratio of the 1650/1450 cm-1 bands (0.56 and 0.68 for Sumatra and Germany resins, respectively), indicating a differences in their maturation process. The resins from Sumatra seem to be more mature than glessite from Germany. The excitation-emission (EM-EX) and synchronous spectra showed unique, chemical compositions of these resins, which are different one from another. The GC-MS data for Sumatran resins, dominated by sesquiterpenoids and triterpenoids (amyrin), confirmed their botanical origin (angiosperms as their biological affinities). The sesquiterpenoid biomarkers with cadine-structures suggested the glessite underwent more advanced polymerization processes, which does not correlate with its RS spectrum. The geological factors, the environmental conditions of resin deposition, and later various diagenesis processes may have influenced the maturation and crosslinking of compounds. Despite the genetic similarity of the resins from various part of the world, Sumatra and Germany, advanced techniques such as Gas Chromatography-Mass Spectrometry and Fluorescence Spectroscopy were the most useful to find the differences between them. These differences are predominantly a result of different diagenetic transformations of the resins.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 960-964, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27837739

RESUMEN

Differently colored authigenic quartz crystals were found as the druses compound within mudstone heteroliths from the Pepper Mts. Shale Formation (Cambrian unit of the Holy Cross Mts., Central Poland). The genesis of this mineral was established on the basis of fluid inclusion study. Raman microspectroscopy was the key instrumental technique to identify the nature of the compounds trapped in the fluid inclusions. Methane (2917cm-1) or water vapor (broad band ~2500-3000cm-1) occur within two-phased primary inclusion assemblages, while nitrogen (2329cm-1) associated with methane and trace amount of carbon dioxide (1285, 1388cm-1) occur within secondary fluid inclusion assemblage. Temperatures of homogenization of primary fluid inclusions was obtained on the basis of heating experiments and ranged from 171° to 266°C. These values are much higher than expected for the diagenetic system without metamorphic changes what may imply hydrothermal origin of quartz crystals. The source of fluids is uncertain as in the Holy Cross Mts. there was no volcanic activity to the end of Late Devonian. However, fluids originated in metamorphic basin could use deep faults as the migration paths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA