Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 56(2): 159-169, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703323

RESUMEN

INTRODUCTION: Well-trained staff is needed to interpret cardiopulmonary exercise tests (CPET). We aimed to examine the accuracy of machine learning-based algorithms to classify exercise limitations and their severity in clinical practice compared with expert consensus using patients presenting at a pulmonary clinic. METHODS: This study included 200 historical CPET data sets (48.5% female) of patients older than 40 yr referred for CPET because of unexplained dyspnea, preoperative examination, and evaluation of therapy progress. Data sets were independently rated by experts according to the severity of pulmonary-vascular, mechanical-ventilatory, cardiocirculatory, and muscular limitations using a visual analog scale. Decision trees and random forests analyses were calculated. RESULTS: Mean deviations between experts in the respective limitation categories ranged from 1.0 to 1.1 points (SD, 1.2) before consensus. Random forests identified parameters of particular importance for detecting specific constraints. Central parameters were nadir ventilatory efficiency for CO 2 , ventilatory efficiency slope for CO 2 (pulmonary-vascular limitations); breathing reserve, forced expiratory volume in 1 s, and forced vital capacity (mechanical-ventilatory limitations); and peak oxygen uptake, O 2 uptake/work rate slope, and % change of the latter (cardiocirculatory limitations). Thresholds differentiating between different limitation severities were reported. The accuracy of the most accurate decision tree of each category was comparable to expert ratings. Finally, a combined decision tree was created quantifying combined system limitations within one patient. CONCLUSIONS: Machine learning-based algorithms may be a viable option to facilitate the interpretation of CPET and identify exercise limitations. Our findings may further support clinical decision making and aid the development of standardized rating instruments.


Asunto(s)
Prueba de Esfuerzo , Pulmón , Humanos , Pruebas de Función Respiratoria , Disnea/etiología , Algoritmos , Tolerancia al Ejercicio
2.
Neuropsychopharmacology ; 48(8): 1175-1183, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37185950

RESUMEN

Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, and given their clinical potential, there is a need to identify biomarkers that underlie their effects. Here, we investigate the neural mechanisms of lysergic acid diethylamide (LSD) using regression dynamic causal modelling (rDCM), a novel technique that assesses whole-brain effective connectivity (EC) during resting-state functional magnetic resonance imaging (fMRI). We modelled data from two randomised, placebo-controlled, double-blind, cross-over trials, in which 45 participants were administered 100 µg LSD and placebo in two resting-state fMRI sessions. We compared EC against whole-brain functional connectivity (FC) using classical statistics and machine learning methods. Multivariate analyses of EC parameters revealed predominantly stronger interregional connectivity and reduced self-inhibition under LSD compared to placebo, with the notable exception of weakened interregional connectivity and increased self-inhibition in occipital brain regions as well as subcortical regions. Together, these findings suggests that LSD perturbs the Excitation/Inhibition balance of the brain. Notably, whole-brain EC did not only provide additional mechanistic insight into the effects of LSD on the Excitation/Inhibition balance of the brain, but EC also correlated with global subjective effects of LSD and discriminated experimental conditions in a machine learning-based analysis with high accuracy (91.11%), highlighting the potential of using whole-brain EC to decode or predict subjective effects of LSD in the future.


Asunto(s)
Alucinógenos , Dietilamida del Ácido Lisérgico , Humanos , Dietilamida del Ácido Lisérgico/farmacología , Encéfalo , Alucinógenos/farmacología , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA