Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 18(1): e0277804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701283

RESUMEN

Unoccupied aerial systems (UAS) based high throughput phenotyping studies require further investigation to combine different environments and planting times into one model. Here 100 elite breeding hybrids of maize (Zea mays L.) were evaluated in two environment trials-one with optimal planting and irrigation (IHOT), and one dryland with delayed planting (DHOT). RGB (Red-Green-Blue) based canopy height measurement (CHM) and vegetation indices (VIs) were estimated from a UAS platform. Time series and cumulative VIs, by both summation (ΣVI-SUMs) and area under the curve (ΣVI-AUCs), were fit via machine learning regression modeling (random forest, linear, ridge, lasso, elastic net regressions) to estimate grain yield. VIs were more valuable predictors of yield to combine different environments than CHM. Time series VIs and CHM produced high accuracies (~68-72%), but inconsistent models. A little sacrifice in accuracy (~60-65%) produced consistent models using ΣVI-SUMs and CHM during pre-reproductive vegetative growth. Absence of VIs produced poorer accuracies (by about ~5-10%). Normalized difference type VIs produced maximum accuracies, and flowering times were the best times for UAS data acquisition. This study suggests that the best yielding varieties can be accurately predicted in new environments at or before flowering when combining multiple temporal flights and predictors.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Grano Comestible
2.
Plant Direct ; 6(10): e448, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36284735

RESUMEN

Both annual and perennial sorghum biomass serve as important forage for ruminant animals around the world. Unfortunately, sorghum can produce hydrogen cyanide (HCN), which, if occurring in high enough concentrations, can be toxic or lethal to animals that consume it. The objectives of this study were to develop a fast and inexpensive colorimetric assay to measure the hydrogen cyanide potential (HCN-P) as well as to compare this with existing visual assays while assessing the range of variation for HCN-P among perennial and annual sorghum biomass. The HCN-P of 100 sorghum lines derived from an interspecific hybridization program was determined over 2 years (establishment and regrowth) using both visual and colorimetric assays. Visual assessment underestimated the HCN-P and was less accurate than colorimetry. Repeatability for HCN-P across all sampling dates was functionally zero in the visual assessment and low for the colorimetric assay. This was mostly explained by the significant pedigree × year interaction effects and growth stage. Growth stage substantially influenced HCN-P, which should be considered when feeding animals on fresh forage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA