Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 61(10): 2591-2597, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471327

RESUMEN

We propose a high-pressure sensing mechanism in solid-core silica photonic crystal fibers (PCF) that is based on the nonlinear optical process of degenerate four-wave mixing. A quite simple configuration for the pressure sensor is given and is theoretically investigated by obtaining signal gain spectra. We focus on the Stokes and anti-Stokes sidebands that are generated during propagation of the field along the PCF due to the interplay of dispersion and nonlinear optical effects. We have considered wave propagation in the normal dispersion regime with the inclusion of negative fourth-order dispersion. We have also considered a pumping field with wavelength of 1076 nm and peak power of 3000 W that propagates along a PCF with 40 cm of length. We have optimized sensitivity, varying lattice pitch and air-hole diameter, and we have obtained high sensitivities of the Stokes and anti-Stokes lines of 3.672 and -0.146nm/MPa, respectively. The proposed sensors have potential applicability in high-pressure environments.

2.
Appl Opt ; 58(2): 333-339, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645311

RESUMEN

A novel magnetic field sensor based on the degenerate four-wave mixing (DFWM) technique is theoretically proposed using a As2S3-core silica-cladding photonic crystal fiber (PCF). In order to enhance the sensitivity, we put forth a novel design of highly nonlinear PCF where the silica cladding is doped with either Au, Ag, or Al metallic nanoparticles. The effect of volume fraction of the nanoparticles within the cladding and the size of nanoparticles are considered as the control parameters in designing the magnetic field PCF sensor to obtain high sensitivity using this novel DFWM scheme. The PCF structure of the proposed sensor is optimized with the proposed pitch of 3 µm and air hole diameter of 2.78 µm. We consider a pumping pulsed laser light with a wavelength of 2100 nm in the mid-IR regime. It has been found that the optimized PCF with Al-SiO2-cladding with small volume fraction and small nanoparticle size possess magnetic field sensitivity values of 2.74 and -0.058 nm/Oe for the Stokes and anti-Stokes gain lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA