RESUMEN
In this study, it is demonstrated that CsPbBr3 perovskite nanocrystals (NCs) can enhance the overall performances of photomultiplication-type organic photodiodes (PM-OPDs). The proposed approach enables the ionic-polarizable CsPbBr3 NCs to be evenly distributed throughout the depletion region of Schottky junction interface, allowing the entire trapped electrons within the depletion region to be stabilized, in contrast to previously reported interface-limited strategies. The optimized CsPbBr3 -NC-embedded poly(3-hexylthiophene-diyl)-based PM-OPDs exhibit exceptionally high external quantum efficiency, specific detectivity, and gain-bandwidth product of 2,840,000%, 3.97 × 1015 Jones, and 2.14 × 107 Hz, respectively. 2D grazing-incidence X-ray diffraction analyses and drift-diffusion simulations combined with temperature-dependent J-V characteristic analyses are conducted to investigate the physics behind the success of CsPbBr3 -NC-embedded PM-OPDs. The results show that the electrostatic interactions generated by the ionic polarization of NCs effectively stabilize the trapped electrons throughout the entire volume of the photoactive layer, thereby successfully increasing the effective energy depth of the trap states and allowing efficient PM mechanisms. This study demonstrates how a hybrid-photoactive-layer approach can further enhance PM-OPD when the functionality of inorganic inclusions meets the requirements of the target device.
RESUMEN
Organic vertical transistors are promising device with benefits such as high operation speed, high saturation current density, and low-voltage operation owing to their short channel length. However, a short channel length leads to a high off-current, which is undesirable because it affects the on-off ratio and power consumption. This study presents a breakthrough in the development of high-performance organic Schottky barrier transistors (OSBTs) with a low off-current by utilizing a near-ideal source electrode with a web-like Ag nanowire (AgNW) morphology. This is achieved by employing a humidity- and surface-tension-mediated liquid-film rupture technique, which facilitates the formation of well-connected AgNW networks with large pores between them. Therefore, the gate electric field is effectively transmitted to the semiconductor layer. Also, the minimized surface area of the AgNWs causes complete suppression of the off-current and induces ideal saturation of the OSBT output characteristics. p- and n-type OSBTs exhibit off-currents in the picoampere range with on/off ratios exceeding 106 and 105, respectively. Furthermore, complementary inverters are prepared using an aryl azide cross-linker for patterning, with a gain of >16. This study represents a significant milestone in the development of high-performance organic vertical transistors and verifies their applicability in organic electronic circuitry.
RESUMEN
Here we introduce a junction engineering approach to realize a high performance non-power-driven organic photodiode. To overcome the external power source dependency of conventional photodiodes, in this work, we try not only to implement an inherently large built-in-potential of the junction but also to utilize an inherently low charge carrier concentration of the semiconductor. The strategically designed ITO/plasma-treated ZnO/poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV)/MoO3/Ag geometry showed near-ideal Schottky junction properties with a high zero-bias built-in potential of 0.54 eV, leading to a zero-bias depletion width of 470 nm. As a result, a green-selective polymeric photodiode with high zero-bias detectivity up to 5 × 1011 Jones and a low noise equivalent power of 2.98 × 10-12 W Hz-1/2 are demonstrated, revealing the possibility of a thin film, color-selective and non-power-driven polymeric photodiode for battery-free application.