Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 5(8): 1800509, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30128260

RESUMEN

In an attempt to replace thermally vulnerable organic perovskites, considerable research effort has recently been focused on the development of all-inorganic perovskites in the field of photovoltaics. The preceding studies demonstrated that cesium lead halide perovskites are promising candidates for thermally stable and efficient solar cell materials. Here, the recent progress in cesium lead halide perovskite-based solar cells is summarized. Whether organic cations are essential for the superiority of halide perovskites is controversial. However, more than 13% efficient solar cells have been successfully fabricated by employing cesium lead halide perovskites in a short amount of time. The state-of-the-art materials engineering techniques will help to achieve a remarkable photovoltaic performance comparable to that of organic perovskites. In addition, improved understanding of the intrinsic photophysical behaviors will provide new insights that will facilitate further improvements in solar cell applications.

2.
ACS Nano ; 12(8): 8564-8571, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30001099

RESUMEN

Numerous studies have reported the use of halide perovskites as highly functional light-harvesting materials. The development of optimized compositions and deposition approaches has led to impressive improvements; however, no noticeable breakthrough in performance has been observed for these materials recently. Here, a breakthrough that enables the fabrication of vertically grown halide perovskite (VGHP) nanopillar photodetectors via a nanoimprinting crystallization technique is demonstrated. We used engraved nanopatterned polymer stamps to form VGHP nanopillars during the pressurized crystallization of the softly baked gel state of a methylammonium lead iodide (CH3NH3PbI3, denoted MAPI) film. The VGHP films exhibit much lower defect density and higher conductivity, as supported by current-voltage characteristic measurements and conductive atomic force microscopy measurements. Ultimately, two-terminal lateral photodetectors based on the VGHP nanopillar films show a greatly enhanced photoresponse compared with flat film-based photodetectors. We expect that the deposition method presented here will help surpass the technical limits and contribute to further improvements in various halide-perovskite-based devices.

3.
Nanoscale ; 9(34): 12677-12683, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28828453

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a popular and promising hole transport material for making efficient inverted-planar perovskite solar cells (IP-PSCs). However, the mismatch between the work function of conventional PEDOT:PSS and the valence band maximum of perovskite materials is still a challenge for efficient hole extraction. Here, we report systematic studies on the work-function modification and thermodynamic morphological evolution of PEDOT:PSS films by tuning the PSS/PEDOT ratio, along with its effects on the photovoltaic responses of IP-PSCs. We found that the open-circuit voltage (VOC) of an IP-PSC could be enhanced by controlling the work function of PEDOT:PSS. Furthermore, the optical transmittance of the PEDOT:PSS film could be maximized by controlling the morphological evolution, which will further increase the short-circuit current density (JSC) of the IP-PSC. The VOC and JSC of the IP-PSC with the optimized PEDOT:PSS composition increased from 0.88 to 0.93 V and from 17.11 to 20.77 mA cm-2, respectively, compared with an IP-PSC containing commercial PEDOT:PSS, which results in a power conversion energy that is greatly improved from 12.39 to 15.24%.

4.
J Phys Chem Lett ; 8(13): 2936-2940, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28605910

RESUMEN

Thermal instability of organic-inorganic hybrid perovskites will be an inevitable hurdle for commercialization. Recently, all-inorganic cesium lead halide perovskites, in particular, CsPbI2Br, have emerged as thermally stable and efficient photovoltaic light absorbers. However, the fundamental properties of this material have not been studied in detail. The crystal formation behavior of CsPbI2Br is investigated by examining the surface morphology, crystal structure, and chemical state of the perovskite films. We discover a previously uncharacterized feature that the formation of black polymorph through optimal annealing temperature proves to be critical to both solar cell efficiency and phase stability. Our optimized planar heterojunction solar cell exhibits a J-V scan efficiency of 10.7% and open-circuit voltage of 1.23 V, which far outperforms the preceding literature.

5.
Nano Lett ; 17(3): 2028-2033, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28170276

RESUMEN

Thermally unstable nature of hybrid organic-inorganic perovskites has been a major obstacle to fabricating the long-term operational device. A cesium lead halide perovskite has been suggested as an alternative light absorber, due to its superb thermal stability. However, the phase instability and poor performance are hindering the further progress. Here, cesium lead halide perovskite solar cells with enhanced performance and stability are demonstrated via incorporating potassium cations. Based on Cs0.925K0.075PbI2Br, the planar-architecture device achieves a power conversion efficiency of 10.0%, which is a remarkable record in the field of inorganic perovskite solar cells. In addition, the device shows an extended operational lifetime against air. Our research will stimulate the development of cesium lead halide perovskite materials for next-generation photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA