Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 716, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828515

RESUMEN

BACKGROUND: Androgen receptor (AR) activation and repression dual-functionality only became known recently and still remains intriguing in prostate cancer (PCa). MYC is a prominent oncogene that functionally entangles with AR signaling in PCa. Further exploration of AR regulatory mechanisms on MYC gene transcription bears clinical and translation significance. METHODS: Bioinformatics analysis of PCa cell line and clinical RNA-Seq and ChIP-Seq (chromatin immunoprecipitation-sequencing) datasets to anchor interactions of AR and MYC transcriptional networks. ChIP-qPCR and 3C (chromosome conformation capture) analyses to probe MYC distal regulation by AR binding sites (ABSs). CRISPR/Cas9-mediated genome-editing to specify functions of ABS within the 8q24-MYC locus on androgen-mediated MYC transcription. Global FoxA1 and HoxB13 distribution profiling to advance AR transcriptional mechanisms. RESULTS: Here we recognize AR bi-directional transcription mechanisms by exploiting the prominent 8q24-MYC locus conferring androgen hyper-sensitivity. At ~ 25 Kb downstream of the MYC gene, we identified an undefined ABS, P10. By chromatin analyses, we validated androgen-dependent spatial interaction between P10 and MYC-Promoter (MYC-Pro) and temporal epigenetic repression of these MYC-proximal elements. We next designed a CRISPR/Cas9-mediated double genomic knock-out (KO) strategy to show that P10-KO slightly lessened androgen-elicited MYC transrepression in LNCaP-AR cells. In similar genomic editing assays, androgen-mediated MYC repression became slightly deepened upon KO of P11, an ABS in the PVT1 gene locus highly enriched in AR-binding motifs and peaks. We also investigated multiple ABSs in the established PCAT1 super-enhancer that distally interacts with MYC-Pro for transactivation, with each KO pool consistently shown to relieve androgen-elicited MYC repression. In the end, we systemically assessed androgen effects in the 8q24-MYC locus and along PCa genome to generalize H3K27ac and BRD4 re-distribution from pioneer factors (FoxA1 and HoxB13) to AR sites. CONCLUSION: Together, we reconciled these observations by unifying AR dual-functions that are mechanistically coupled to and equilibrated by co-factor redistribution.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-myc , Receptores Androgénicos , Humanos , Masculino , Andrógenos , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
2.
Prostate ; 83(15): 1415-1429, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565264

RESUMEN

BACKGROUND: The discovery of androgen receptor (AR) having transrepression effects completes the circle of its functionalities as a typical transcription factor, which intrinsically bears dual functions of activation and repression linked to co-factor competition and redistribution. Indeed, AR dual functions are exemplified by locus-wide regulation of the oncogenic 8q24-MYC region. METHODS: RT-qPCR assay and public RNA-profiling datasets were used to assess MYC transcription in androgen-sensitive cell lines. Public ChIP-seq and RNA-Seq datasets were computed to evaluate AR-MYC direct and indirect signatures. Gene sets in typical MYC and AR pathways were monitored to validate their cross-talks. Bio-informatics and chromosome conformation capture (3C) assay were performed in the AR gene locus to examine androgen-elicited distal regulation. Finally, co-factor re-distribution were globally tracked between AR and MYC binding sites. RESULTS: In this report, we found MYC responded negatively to androgen with hypersensitivity, rivaling AR natural functions as an innate androgen effector. Furthermore, both direct and indirect AR and MYC transcriptional programs were actively in equilibration. With established androgen-mediated versus MYC-mediated gene subsets, we validated AR and MYC pathways were both bidirectional and extensively entangled. In addition, we determined that the AR gene locus resembled the MYC gene region and both loci were androgen-repressed via epigenetics and chromatin architectural alterations. Significantly, transcriptional factor profiling along the prostate cancer (PCa) genome exposed that PCa transcriptomes were dynamically equilibrated between AR-binding site and MYC-binding site. CONCLUSION: Together, our findings stratified AR-MYC interactions that are extensively wired and intricately organized to compensate for essential PCa transcriptional programs and neutralize excessive signaling.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Andrógenos/metabolismo , Transcriptoma , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Factores de Transcripción/genética , Regulación Neoplásica de la Expresión Génica
3.
Fitoterapia ; 136: 104178, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31121254

RESUMEN

One hitherto unknown 24-nor-13,27-cycloursane-type triterpenoid, lucumic acid A (1), one new 24-nor-ursane triterpenoid, lucumic acid B (2), along with six known triterpenoids were isolated from the ethanol extract of the leaves of Lucuma nervosa. Their structures were established on the basis of spectroscopic data interpretation. Lucumic acid A (1) is the first example of a 24-nor-triterpenoid with a 13,27-cyclopropane ring.


Asunto(s)
Ácido Oleanólico/análogos & derivados , Hojas de la Planta/química , Pouteria/química , Triterpenos/aislamiento & purificación , China , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Estructura Molecular , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/química , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA