Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38417478

RESUMEN

BACKGROUND: The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS: Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), ß-caryophyllene (BC), and ß-caryophyllene oxide (BCO) were examined. RESULTS: All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION: In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Ratones , Animales , Dronabinol/farmacología , Terpenos/farmacología , Cannabinoides/farmacología , Cannabinoides/metabolismo , Cannabis/metabolismo , Cannabidiol/farmacología , Cannabinol/farmacología
2.
Sci Signal ; 17(823): eadd9139, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349966

RESUMEN

Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of ß-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G , Transducción de Señal , Ligandos , Transducción de Señal/fisiología , Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo
3.
Biomolecules ; 12(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35883447

RESUMEN

Epithelial-mesenchymal transition (EMT) is a crucial process in which the polarized epithelial cells acquire the properties of mesenchymal cells and gain invasive properties. We have previously demonstrated that manganese superoxide dismutase (MnSOD) can regulate the EMT phenotype by modulating the intracellular reactive oxygen species. In this report, we have demonstrated the EMT-suppressive effects of 2,3,5,6-Tetramethylpyrazine (TMP, an alkaloid isolated from Chuanxiong) in colon cancer cells. TMP suppressed the expression of MnSOD, fibronectin, vimentin, MMP-9, and N-cadherin with a parallel elevation of occludin and E-cadherin in unstimulated and TGFß-stimulated cells. Functionally, TMP treatment reduced the proliferation, migration, and invasion of colon cancer cells. TMP treatment also modulated constitutive activated as well as TGFß-stimulated PI3K/Akt/mTOR, Wnt/GSK3/ß-catenin, and MAPK signaling pathways. TMP also inhibited the EMT program in the colon cancer cells-transfected with pcDNA3-MnSOD through modulation of MnSOD, EMT-related proteins, and oncogenic pathways. Overall, these data indicated that TMP may inhibit the EMT program through MnSOD-mediated abrogation of multiple signaling events in colon cancer cells.


Asunto(s)
Neoplasias del Colon , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Movimiento Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Glucógeno Sintasa Quinasa 3 , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Pirazinas , Superóxido Dismutasa/genética , Factor de Crecimiento Transformador beta/metabolismo
4.
Biochimie ; 200: 119-130, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654241

RESUMEN

Renal cell carcinoma (RCC), also called kidney cancer, is one of the most common malignancies worldwide, including the United States and China. Because of the characteristics of RCC that are both insidious and largely insensitive to chemo-radiation, the incidence and mortality of RCC are increasing every year. However, there are few studies describing anti-cancer effects of the natural compounds on RCC as compared to other cancers. Here, we analyzed the anti-neoplastic impact of Tanshinone IIA (TSN) on RCC cells. We noted that TSN increased the expression of LC3 proteins while having little effect on PARP and Alix protein expression. We found that TSN up-regulated the expression of autophagy-related proteins such as Atg7 and Beclin-1. Moreover, TSN promoted the formation of autophagic vacuoles such as autophagosomes and autolysosomes. However, treatment with 3-Methyladenine (3-MA) or Chloroquine (CQ), slightly decreased the ability of TSN to induce autophagy, but still autophagy occurred. In addition, TSN inhibited translocation of ß-catenin into the nucleus, and ß-catenin deletion and TSN treatment in RCC increased the expression of LC3 protein. Overall, our findings indicate that TSN can exert significant anti-tumor effects through down-regulation of ß-catenin to induce autophagic cell death.


Asunto(s)
Muerte Celular Autofágica , Carcinoma de Células Renales , Neoplasias Renales , Abietanos , Apoptosis , Autofagia , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Neoplasias Renales/tratamiento farmacológico , beta Catenina/metabolismo
5.
Eur J Pharmacol ; 928: 175113, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35750234

RESUMEN

Withaferin A (WFA), a withanolide, is isolated from plants of Withania somnifera (L.) Dual (Solanaceae), known as Indian ginseng, Indian winter cherry or Ashwagandha. It has been reported to exert multifaceted anti-neoplastic effects. Here, we analyzed the impact of WFA on apoptosis and autophagy activation in different human colorectal cancer cell lines. We observed that WFA exposure caused an increased aggregation of cells in the subG1 arrest in cell cycle, and increased the number of late apoptotic cells. WFA also induced the apoptosis via PARP and caspase-3 cleavage accompanied with suppression of levels of anti-apoptotic proteins like Bcl-2 and Bcl-xl. The influence of WFA on autophagy was validated by acridine orange, MDC staining, and immunocytochemistry of LC3. It was found that 24 h treatment of WFA increased the acridine and MDC stained autophagosome with induced the LC3 and other autophagy markers Atg7 and beclin-1 activation. We used Z-DEVD-FMK, a caspase-3 blocker, and 3-MA, an autophagy inhibitor, to confirm whether these effects were specific to apoptosis and autophagy, and observed the recovery of both these processes upon exposure to WFA. Moreover, the activation of ß-catenin protein was attenuated by WFA. Interestingly, small interfering RNA (siRNA)-promoted ß-catenin knockdown augmented the WFA-induced active form of p-GSK-3ß, and stimulated autophagy and apoptosis through PARP and LC3 activation. These findings suggested that WFA could stimulate activation of both apoptosis and autophagy process via modulating ß-catenin pathway.


Asunto(s)
Neoplasias Colorrectales , Witanólidos , Apoptosis , Autofagia , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Witanólidos/farmacología , Witanólidos/uso terapéutico , beta Catenina
6.
Life Sci ; 284: 119893, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34454947

RESUMEN

AIMS: Tumor cells metastasis as well as proliferation are important factors that can substantially determines the prognosis of cancer. In particular, epithelial-mesenchymal transition (EMT) is key phenomena which can cause tumor cell transition into other organs by promoting the disruption of the cell-cell junctions. Because oxymatrine (OMT) have been reported to attenuate the tumor growth, we investigated whether OMT can down-regulate EMT process in tumor cells. We also focused on transforming growth factor-ß (TGF-ß)-induced EMT process because EMT process can be significantly induced by this growth factor. MAIN METHODS: The cell viability was measured by MTT and real time cell analysis (RTCA) assay. The expression levels of various proteins involved in the regulation of EMT and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. mRNA levels of several important EMT markers were analyzed by reverse transcription polymerase chain reaction (RT-PCR). The effects of OMT on the cellular invasion and migration were evaluated by RTCA, wound healing assay, and boyden chamber assays. KEY FINDINGS: OMT suppressed the expression of both constitutive and TGF-ß-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail, but induced the levels of epithelial markers. Moreover, OMT down-regulated oncogenic PI3K/Akt/mTOR pathways which lead to a significant attenuation of invasive and migratory potential of lung cancer cells. SIGNIFICANCE: Overall, our study established a novel anti-metastatic role of OMT against human lung cancer cells.


Asunto(s)
Alcaloides/farmacología , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/patología , Quinolizinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alcaloides/química , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Modelos Biológicos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizinas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/farmacología
8.
Front Cell Neurosci ; 14: 234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848624

RESUMEN

Hearing loss is the third most common chronic health condition in the United States and largely results from damage to sensory hair cells. Major causes of hair cell damage include aging, noise exposure, and medications such as aminoglycoside antibiotics. Due to their potent antibacterial properties and low cost, aminoglycosides are often used for the treatment of gram-negative bacterial infections, surpassing expensive antibiotics with fewer harmful side effects. However, their use is coupled with permanent hearing loss in over 20% of patients requiring these life-sustaining antibiotics. There are currently no FDA-approved drugs that prevent hearing loss from aminoglycosides. A previous study by our group identified the plant alkaloid berbamine as a strong protectant of zebrafish lateral line hair cells from aminoglycoside damage. This effect is likely due to a block of the mechanotransduction channel, thereby reducing aminoglycoside entry into hair cells. The present study builds on this previous work, investigating 16 synthetic berbamine analogs to determine the core structure underlying their protective mechanisms. We demonstrate that nearly all of these berbamine analogs robustly protect lateral line hair cells from ototoxic damage, with ED50 values nearing 20 nM for the most potent analogs. Of the 16 analogs tested, nine strongly protected hair cells from both neomycin and gentamicin damage, while one conferred strong protection only from gentamicin. These data are consistent with prior research demonstrating that different aminoglycosides activate somewhat distinct mechanisms of damage. Regardless of the mechanism, protection required the entire berbamine scaffold. Phenolic alkylation or acylation with lipophilic groups appeared to improve protection compared to berbamine, implying that these structures may be responsible for mitigating damage. While the majority of analogs confer protection by blocking aminoglycoside uptake, 18% of our analogs also confer protection via an uptake-independent mechanism; these analogs exhibited protection when delivered after aminoglycoside removal. Based on our studies, berbamine analogs represent a promising tool to further understand the pathology of aminoglycoside-induced hearing loss and can serve as lead compounds to develop otoprotective drugs.

9.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630806

RESUMEN

Matrine, a quinolizidine alkaloid, is commonly employed for treating various viral and inflammatory disorders. Here, we have evaluated matrine for its activity on C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinases (MMP-9/2) expression, and its potential to affect tumor metastasis and invasion. The effects of matrine on CXCR4, MMP-9/2, and nuclear factor κB (NF-κB) activation in lung (A549), prostate (DU145), and pancreas (MIA PaCa-2) cells were investigated by diverse techniques. The expression level of CXCR4 and MMP-9/2 was analyzed by western blot analysis and reverse transcription polymerase chain reaction. NF-κB activation was also evaluated by western blot analysis, electrophoretic mobility shift assay as well as immunocytochemical experiments. Furthermore, we monitored cell invasion and metastasis activities by wound healing and Boyden chamber assays. We noted that matrine induced a down-regulation of CXCR4 and MMP-9/2 at both protein and mRNA levels. In addition, matrine negatively regulated human epidermal growth factor receptor 2 (HER2) and C-X-C Motif Chemokine Ligand 12 (CXCL12)-induced CXCR4 expression. Moreover, NF-κB suppression by matrine led to inhibition of metastatic potential of tumor cells. Our results suggest that matrine can block the cancer metastasis through the negative regulation of CXCR4 and MMP-9/2 and consequently it can be considered as a potential candidate for cancer therapy.


Asunto(s)
Alcaloides/metabolismo , Alcaloides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quinolizinas/metabolismo , Quinolizinas/farmacología , Células A549 , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , FN-kappa B/metabolismo , Invasividad Neoplásica/genética , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiología , Transducción de Señal/efectos de los fármacos , Matrinas
10.
Molecules ; 25(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183146

RESUMEN

Evodiamine (EVO) is an indoloquinazoline alkaloid that exerts its various anti-oncogenic actions by blocking phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), c-Met, and nuclear factor kappa B (NF-κB) signaling pathways, thus leading to apoptosis of tumor cells. We investigated the ability of EVO to affect hepatocyte growth factor (HGF)-induced c-Met/Src/STAT3 activation cascades in castration-resistant prostate cancer (CRPC). First, we noted that EVO showed cytotoxicity and anti-proliferation activities in PC-3 and DU145 cells. Next, we found that EVO markedly inhibited HGF-induced c-Met/Src/STAT3 phosphorylation and impaired the nuclear translocation of STAT3 protein. Then, we noted that EVO arrested the cell cycle, caused apoptosis, and downregulated the expression of various carcinogenic markers such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), cyclin D1, cyclooxygenase 2 (COX-2), survivin, vascular endothelial growth factor (VEGF), and matrix metallopeptidases 9 (MMP-9). Moreover, it was observed that in cPC-3 and DU145 cells transfected with c-Met small interfering RNA (siRNA), Src/STAT3 activation was also mitigated and led to a decrease in EVO-induced apoptotic cell death. According to our results, EVO can abrogate the activation of the c-Met/Src/STAT3 signaling axis and thus plays a role as a robust suppressor of tumor cell survival, proliferation, and angiogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-met/metabolismo , Quinazolinas/farmacología , Transducción de Señal , Apoptosis/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Daño del ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Masculino , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/genética , Quinazolinas/química , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
11.
Handb Exp Pharmacol ; 258: 61-87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31628605

RESUMEN

There is a vital need for novel approaches and biological targets for drug discovery and development. Treatment strategies for substance use disorders (SUDs) to date have been mostly ineffective other than substitution-like therapeutics. Two such targets are the peptide G-protein-coupled receptors neuropeptide S (NPS) and melanocortin 4 (MC4). Preclinical evidence suggests that antagonists, inverse agonists, or negative allosteric modulators of these receptors might be novel therapeutics for SUDs. NPS is a relatively unexplored receptor with high potential for treating SUD. MC4 has a strong link to early-onset obesity, and emerging evidence suggests significant overlap between food-maintained and drug-maintained behaviors making MC4 an intriguing target for SUD. This chapter provides an overview of the literature in relation to the roles of NPS and MC4 in drug-seeking behaviors and then provides a medicinal chemistry-based survey of the small molecule ligands for each receptor.


Asunto(s)
Neuropéptidos , Receptor de Melanocortina Tipo 4 , Trastornos Relacionados con Sustancias/terapia , Humanos , Ligandos
12.
Cancers (Basel) ; 11(1)2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30621055

RESUMEN

Oxymatrine (OMT) is a major alkaloid found in radix Sophorae flavescentis extract and has been reported to exhibit various pharmacological activities. We elucidated the detailed molecular mechanism(s) underlying the therapeutic actions of OMT in non-small cell lung cancer (NSCLC) cells and a xenograft mouse model. Because the STAT5 signaling cascade has a significant role in regulating cell proliferation and survival in tumor cells, we hypothesized that OMT may disrupt this signaling cascade to exert its anticancer effects. We found that OMT can inhibit the constitutive activation of STAT5 by suppressing the activation of JAK1/2 and c-Src, nuclear localization, as well as STAT5 binding to DNA in A549 cells and abrogated IL-6-induced STAT5 phosphorylation in H1299 cells. We also report that a sub-optimal concentration of OMT when used in combination with a low dose of paclitaxel produced significant anti-cancer effects by inhibiting cell proliferation and causing substantial apoptosis. In a preclinical lung cancer mouse model, OMT when used in combination with paclitaxel produced a significant reduction in tumor volume. These results suggest that OMT in combination with paclitaxel can cause an attenuation of lung cancer growth both in vitro and in vivo.

13.
Psychopharmacology (Berl) ; 236(3): 915-924, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30341459

RESUMEN

RATIONALE: Novel synthetic "bath salt" cathinones continue to appear on the street as abused and addictive drugs. The range of subjective experiences produced by different cathinones suggests that some compounds have primarily dopaminergic activity (possible stimulants) while others have primarily serotonergic activity (possible empathogenics). An understanding of the structure activity relationships (SARs) of these compounds will help in assessing the likely behavioral effects of future novel structures, and to define potential therapeutic strategies to reverse any reinforcing effects. OBJECTIVES: A series of methcathinone analogs was systematically studied for their activity at the dopamine and serotonin transporters. Compound structures varied at the aromatic group, either by substituent or by replacement of the phenyl ring with a naphthalene or indole ring. METHODS: A novel, high-yielding synthesis of methcathinone hydrochlorides was developed which avoids isolation of the unstable free bases. Neurotransmitter transporter release activity was determined in rat brain synaptosomes as previously reported. Compounds were also screened for activity at the norepinephrine transporter. RESULTS: Twenty-eight methcathinone analogs were analyzed and fully characterized in dopamine and serotonin transporter release assays. Compounds substituted at the 2-position (ortho) were primarily dopaminergic. Compounds substituted at the 3-position (meta) were found to be much less dopaminergic, with some substituents favoring serotonergic activity. Compounds substituted at the 4-position (para) were found to be far more serotonergic, as were disubstituted compounds and other large aromatic groups. One exception was the fluoro-substituted analogs which seem to favor the dopamine transporter. CONCLUSIONS: The dopaminergic to serotonergic ratio can be manipulated by choice of substituent and location on the aromatic ring. It is therefore likely possible to tweak the subjective and reinforcing effects of these compounds by adjusting their structure. Certain substituents like a fluoro group tend to favor the dopamine transporter, while others like a trifluoromethyl group favor the serotonin transporter.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Propiofenonas/farmacología , Serotonina/metabolismo , Sinaptosomas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/química , Estimulantes del Sistema Nervioso Central/farmacología , Masculino , Propiofenonas/química , Ratas , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Relación Estructura-Actividad , Sinaptosomas/efectos de los fármacos
14.
Front Pharmacol ; 9: 531, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29899697

RESUMEN

Because of the essential role of signal transducer and activator of transcription 3 (STAT3) in proliferation, anti-apoptosis, and chemoresistance of multiple myeloma (MM), we investigated whether icariin, a prenylated flavonol glycoside, inhibits both constitutive and inducible STAT3 activation in human myeloma cell lines. We noted that icariin could block constitutive STAT3 phosphorylation as well as its nuclear translocation and DNA binding ability in U266 cells. Icariin also suppressed IL-6-induced STAT3 activation through the inhibition of upstream kinases (Janus activated kinase-1 and -2, and c-Src). We found that icariin downregulated the protein expression of STAT3 downstream target gene products such as Bcl-2, Bcl-xl, survivin, IAP-1/2, COX-2, VEGF, and matrix metallopeptidase 9 (MMP-9) in a concentration-dependent manner. Moreover, this flavonoid also exhibited the capacity to significantly induce apoptosis and suppress proliferation of MM cells. Interestingly, this agent also significantly potentiated the apoptotic effects of bortezomib through the suppression of STAT3 activation in MM cells. Altogether, our data indicates that the potential application of icariin as a STAT3 blocker in myeloma therapy.

15.
J Med Chem ; 59(12): 5752-65, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27213719

RESUMEN

The design, synthesis, and biological evaluations of eight 4-substituted 5-methyl-furo[2,3-d]pyrimidines are reported. Synthesis involved N(4)-alkylation of N-aryl-5-methylfuro[2,3-d]pyrimidin-4-amines, obtained from Ullmann coupling of 4-amino-5-methylfuro[2,3-d]pyrimidine and appropriate aryl iodides. Compounds 3, 4, and 9 showed potent microtubule depolymerizing activities, while compounds 6-8 had slightly lower potency. Compounds 4, 6, 7, and 9 inhibited tubulin assembly with IC50 values comparable to that of combretastatin A-4 (CA-4). Compounds 3, 4, and 6-9 circumvented Pgp and ßIII-tubulin mediated drug resistance, mechanisms that can limit the efficacy of paclitaxel, docetaxel, and the vinca alkaloids. In the NCI 60-cell line panel, compound 3 exhibited GI50 values less than 10 nM in 47 of the cell lines. In an MDA-MB-435 xenograft model, compound 3 had statistically significant antitumor effects. The biological effects of 3 identify it as a novel, potent microtubule depolymerizing agent with antitumor activity.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Pirimidinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
Alkaloids Chem Biol ; 76: 63-169, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26827883

RESUMEN

The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the family Apocynaceae. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids and the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles, has been presented, which involves application of the asymmetric Pictet-Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since 2000.


Asunto(s)
Alcaloides Indólicos/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Ajmalina/biosíntesis , Ajmalina/química , Alcaloides Indólicos/química , Espectroscopía de Resonancia Magnética , Alcaloides de Triptamina Secologanina/química
17.
Drug Alcohol Depend ; 158: 22-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26596587

RESUMEN

BACKGROUND: Conventional benzodiazepines bind non-selectively to GABAA receptors containing α1, α2, α3, and α5 subunits (α1GABAA, α2GABAA, α3GABAA, and α5GABAA receptors, respectively), and the role of these different GABAA receptor subtypes in the reinforcing effects of benzodiazepines has not been characterized fully. We used a pharmacological antagonist approach with available subtype-selective ligands to evaluate the role of GABAA receptor subtypes in the reinforcing effects of the non-selective conventional benzodiazepine, triazolam. METHODS: Rhesus monkeys (n=4) were trained under a progressive-ratio schedule of intravenous midazolam delivery and dose-response functions were determined for triazolam, in the absence and presence of flumazenil (non-selective antagonist), ßCCT and 3-PBC (α1GABAA-preferring antagonists), and XLi-093 (α5GABAA-selective antagonist). RESULTS: Flumazenil, ßCCT and 3-PBC shifted the dose-response functions for triazolam to the right in a surmountable fashion, whereas XLi-093 was ineffective. Schild analyses revealed rank orders of potencies of flumazenil=ßCCT>3-PBC. Comparison of potencies between self-administration and previous binding studies with human cloned GABAA receptor subtypes suggested that the potencies for ßCCT and 3-PBC were most consistent with binding at α2GABAA and α3GABAA receptors, but not α1GABAA or α5GABAA receptor subtypes. CONCLUSIONS: Our findings were not entirely consistent with blockade of α1GABAA receptors and are consistent with the possibility of α2GABAA and/or α3GABAA subtype involvement in antagonism of the reinforcing effects of triazolam. The α5GABAA receptor subtype likely does not play a substantial role in self-administration under these conditions.


Asunto(s)
Tiempo de Reacción/efectos de los fármacos , Esquema de Refuerzo , Triazolam/administración & dosificación , Triazolam/antagonistas & inhibidores , Animales , Benzodiazepinas/administración & dosificación , Relación Dosis-Respuesta a Droga , Moduladores del GABA/administración & dosificación , Moduladores del GABA/antagonistas & inhibidores , Humanos , Macaca mulatta , Masculino , Midazolam/administración & dosificación , Tiempo de Reacción/fisiología , Receptores de GABA-A/metabolismo , Autoadministración
18.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 799-803, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057816

RESUMEN

To further define the interactions that enhance the selectivity of binding and to directly compare the binding of the most potent analogue {N(6)-methyl-N(6)-(3,4,5-trifluorophenyl)pyrido[2,3-d]pyrimidine-2,4,6-triamine; compound 26} in the series of bicyclic pyrido[2,3-d]pyrimidine analogues of piritrexim (PTX) with native human (h), Pneumocystis carinii (pc) and Pneumocystis jirovecii (pj) dihydrofolate reductase (DHFR) enzymes, the crystal structures of hDHFR complexed with N(6)-methyl-N(6)-(4-isopropylphenyl)pyrido[2,3-d]pyrimidine-2,4,6-triamine (compound 22), of hDHFR complexed with compound 26 and of pcDHFR complexed with N(6)-methyl-N(6)-1-naphthylpyrido[2,3-d]pyrimidine-2,4,6-triamine (compound 24) are reported as ternary complexes with NADPH. This series of bicyclic pyrido[2,3-d]pyrimidines were designed in which there was a transposition of the 5-methyl group of PTX to the N9 position of the pyrido[2,3-d]pyrimidine. It was hypothesized that the N9-methyl group would preferentially interact with Ile123 of pcDHFR (and Ile123 of pjDHFR), but not with the shorter Val115 in hDHFR. Structure-activity data for this series of antifolates revealed that a trifluoro derivative (26) was the most selective against pjDHFR compared with mammalian DHFR (h/pj = 35.7). Structural data for the hDHFR-26 complex revealed that 26 binds in a different conformation from that observed in the pcDHFR-26 complex. In the hDHFR-26 complex the trifluorophenyl ring of 26 occupies a position near the cofactor-binding site, with close intermolecular contacts with Asp21, Ser59 and Ile60, whereas this ring in the pcDHFR-26 complex is positioned away from the cofactor site and near Ile65, with weaker contacts with Ile65, Phe69 and Ile123. Comparison of the intermolecular contacts between the N9-methyl group with Val115/Ile123 validates the hypothesis that the N9-methyl substituent preferentially interacts with Ile123 compared with Val115 of hDHFR, as the weaker contact with Val115 in the hDHFR structure is consistent with its weaker binding affinity compared with pcDHFR. The results for the structures of hDHFR-22 and pcDHFR-24 show that their inhibitor-binding orientation is similar to that observed in pcDHFR-26 and the pcDHFR variant (F69N) reported previously. The naphthyl moiety of 24 makes several intermolecular contacts with the active-site residues in pcDHFR that help to stabilize the binding, resulting in a more potent inhibitor.


Asunto(s)
Antibacterianos/química , Antagonistas del Ácido Fólico/química , Pneumocystis carinii/química , Pirimidinas/química , Tetrahidrofolato Deshidrogenasa/química , Secuencias de Aminoácidos , Antibacterianos/síntesis química , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Antagonistas del Ácido Fólico/síntesis química , Halogenación , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , NADP/química , Pneumocystis carinii/enzimología , Unión Proteica , Pirimidinas/síntesis química , Proteínas Recombinantes/química , Especificidad de la Especie , Relación Estructura-Actividad
19.
Addict Biol ; 20(2): 236-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24118509

RESUMEN

Approximately 30% of current drinkers in the United States drink excessively, and are referred to as problem/hazardous drinkers. These individuals, who may not meet criteria for alcohol abuse or dependence, comprise binge, heavy drinkers, or both. Given their high prevalence, interventions that reduce the risk of binge and heavy drinking have important public health implications. Impulsivity has been repeatedly associated with excessive drinking in the clinical literature. As impulsivity is correlated with, and may play a critical role in, the initiation and maintenance of excessive drinking, this behavior may be an important target for therapeutic intervention. Hence, a better understanding of pharmacological treatments capable of attenuating excessive drinking and impulsivity may markedly improve clinical outcomes. The high-alcohol-preferring (HAP) mice represent a strong rodent model to study the relationship between impulsivity and excessive alcohol drinking, as recent evidence indicates they consume high levels of alcohol throughout their active cycle and are innately impulsive. Using this model, the present study demonstrates that the triple monoamine uptake inhibitors (TUIs) amitifadine and DOV 102, 677 effectively attenuate binge drinking, heavy drinking assessed via a 24-hour free-choice assay, and impulsivity measured by the delay discounting procedure. In contrast, 3-PBC, a GABA-A α1 preferring ligand with mixed agonist-antagonist properties, attenuates excessive drinking without affecting impulsivity. These findings suggest that in HAP mice, monoamine pathways may predominate as a common mechanism underlying impulsivity and excessive drinking, while the GABAergic system may be more salient in regulating excessive drinking. We further propose that TUIs such as amitifadine and DOV 102, 677 may be used to treat the co-occurrence of impulsivity and excessive drinking.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Consumo de Bebidas Alcohólicas , Compuestos Aza/farmacología , Conducta Animal/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Inhibidores de Captación de Dopamina/farmacología , Conducta Impulsiva/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Carbolinas/farmacología , Ratones
20.
Brain Res Bull ; 104: 1-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24695241

RESUMEN

Long-term use of benzodiazepine-type drugs may lead to physical dependence, manifested by withdrawal syndrome after abrupt cessation of treatment. The aim of the present study was to investigate the influence of duration of treatment, as well as the role of α1-containing GABAA receptors, in development of physical dependence to diazepam, assessed through the level of anxiety and susceptibility to pentylenetetrazole (PTZ)-induced seizures, 24h after withdrawal from protracted treatment in rats. Withdrawal of 2mg/kg diazepam after 28, but not after 14 or 21 days of administration led to an anxiety-like behavior in the elevated plus maze. Antagonism of the diazepam effects at α1-containing GABAA receptors, achieved by daily administration of the neutral modulator ßCCt (5mg/kg), did not affect the anxiety level during withdrawal. An increased susceptibility to PTZ-induced seizures was observed during diazepam withdrawal after 21 and 28 days of treatment. Daily co-administration of ßCCt further decreased the PTZ-seizure threshold after 21 days of treatment, whilst it prevented the diazepam withdrawal-elicited decrease of the PTZ threshold after 28 days of treatment. In conclusion, the current study suggests that the role of α1-containing GABAA receptors in mediating the development of physical dependence may vary based on the effect being studied and duration of protracted treatment. Moreover, the present data supports previous findings that the lack of activity at α1-containing GABAA receptors is not sufficient to eliminate physical dependence liability of ligands of the benzodiazepine type.


Asunto(s)
Ansiedad/inducido químicamente , Diazepam/toxicidad , Agonistas de Receptores de GABA-A/toxicidad , Receptores de GABA-A/metabolismo , Convulsiones/inducido químicamente , Síndrome de Abstinencia a Sustancias/psicología , Animales , Diazepam/administración & dosificación , Agonistas de Receptores de GABA-A/administración & dosificación , Masculino , Actividad Motora/efectos de los fármacos , Subunidades de Proteína , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA