Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Zhejiang Univ Sci B ; 25(3): 254-270, 2024 Mar 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38453639

RESUMEN

As a potential vectored vaccine, Newcastle disease virus (NDV) has been subject to various studies for vaccine development, while relatively little research has outlined the immunomodulatory effect of the virus in antigen presentation. To elucidate the key inhibitory factor in regulating the interaction of infected dendritic cells (DCs) and T cells, DCs were pretreated with the NDV vaccine strain LaSota as an inhibitor and stimulated with lipopolysaccharide (LPS) for further detection by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunoblotting, and quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that NDV infection resulted in the inhibition of interleukin (IL)-12p40 in DCs through a p38 mitogen-activated protein kinase (MAPK)|-dependent manner, thus inhibiting the synthesis of IL-12p70, leading to the reduction in T cell proliferation and the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6 induced by DCs. Consequently, downregulated cytokines accelerated the infection and viral transmission from DCs to T cells. Furthermore, several other strains of NDV also exhibited inhibitory activity. The current study reveals that NDV can modulate the intensity of the innate|‒|adaptive immune cell crosstalk critically toward viral invasion improvement, highlighting a novel mechanism of virus-induced immunosuppression and providing new perspectives on the improvement of NDV-vectored vaccine.


Asunto(s)
Virus de la Enfermedad de Newcastle , Vacunas , Animales , Virus de la Enfermedad de Newcastle/fisiología , Interleucina-12/farmacología , Presentación de Antígeno , Vacunas/farmacología , Células Dendríticas
2.
Front Vet Sci ; 10: 1175391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448583

RESUMEN

Introduction: Three members of Capripoxvirus (CaPV) genus, including lumpy skin disease virus (LSDV), goatpox virus (GTPV), and sheeppox virus (SPPV), are mentioned as notifiable forms by World Organization for Animal Health. These viruses have negatively impacted ruminant farming industry worldwide, causing great economic losses. Although SPPV and GTPV cause more severe clinical disease in only one animal species, they can transfer between sheep and goats. Both homologous and heterologous immunization strategies are used to protect animals against CaPVs. However, development of accurate and rapid methods to distinguish these three viruses is helpful for the early detection, disease surveillance, and control of CaPV infection. Therefore, we developed a novel triplex real-time PCR (qPCR) for the differentiation of LSDV, GTPV, and SPPV. Methods: Universal primers were designed to detect pan-CaPV sequences. Species-specific minor groove binder (MGB)-based probes were designed, which were labeled with FAM for LSDV, HEX for GTPV, and ROX for SPPV. The sensitivity, specificity, reproducibility, and ability of detecting mixed infections were evaluated for the triplex qPCR. Further, 226 clinical samples of the infection and negative controls were subjected to the triplex qPCR, and the results were verified using PCR-restriction fragment length polymorphism (PCR-RFLP) and sequencing methods for PRO30 gene. Results: The triplex qPCR could successfully distinguish LSDV, GTPV, and SPPV in one reaction, and the assay sensitivity was 5.41, 27.70, and 17.28 copies/µL, respectively. No cross-reactivity was observed with other viruses causing common ruminant diseases, including des petits ruminants virus, foot-and-mouth disease virus, bluetongue virus, ovine contagious pustular dermatitis virus, infectious bovine rhinotracheitis virus, and bovine viral diarrhea-mucosal disease virus. Inter-and intra-assay variabilities were < 2.5%. The results indicated that the triplex qPCR was highly specific, sensitive, and reproducible. Simulation experiments revealed that this assay could successfully distinguish two or three viruses in case of mixed infections without any cross-reaction. For clinical samples, the results were completely consistent with the results of PCR-RFLP and sequencing. This demonstrated that the assay was reliable for clinical application. Discussion: The triplex qPCR is a robust, rapid, and simple tool for identifying various types of CaPV as it can successfully distinguish LSDV, GTPV, and SPPV in one reaction. Furthermore, the assay can facilitate more accurate disease diagnosis and surveillance for better control of CaPV infection.

3.
Chin J Nat Med ; 21(5): 346-358, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37245873

RESUMEN

Platycodon grandiflorum (Jacq.) A. DC. is a famous medicinal plant commonly used in East Asia. Triterpene saponins isolated from P. grandiflorum are the main biologically active compounds, among which polygalacin D (PGD) has been reported to be an anti-tumor agent. However, its anti-tumor mechanism against hepatocellular carcinoma is unknown. This study aimed to explore the inhibitory effect of PGD in hepatocellular carcinoma cells and related mechanisms of action. We found that PGD exerted significant inhibitory effect on hepatocellular carcinoma cells through apoptosis and autophagy. Analysis of the expression of apoptosis-related proteins and autophagy-related proteins revealed that this phenomenon was attributed to the mitochondrial apoptosis and mitophagy pathways. Subsequently, using specific inhibitors, we found that apoptosis and autophagy had mutually reinforcing effects. In addition, further analysis of autophagy showed that PGD induced mitophagy by increasing BCL2 interacting protein 3 like (BNIP3L) levels.In vivo experiments demonstrated that PGD significantly inhibited tumor growth and increased the levels of apoptosis and autophagy in tumors. Overall, our findings showed that PGD induced cell death of hepatocellular carcinoma cells primarily through mitochondrial apoptosis and mitophagy pathways. Therefore, PGD can be used as an apoptosis and autophagy agonist in the research and development of antitumor agents.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Mitofagia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Línea Celular , Autofagia , Apoptosis , Proteínas de la Membrana , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/farmacología
4.
Anal Chim Acta ; 1221: 340079, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35934339

RESUMEN

Lumpy skin disease (LSD) in cattle, a transboundary viral disease of cattle once restricted to Africa, has been spreading to many European and Asian countries in the past decade with huge economic losses. This emerging worldwide threat to cattle warrants the development of diagnostic methods for accurate disease screening of suspected samples to effectively control the spread of LSD. In this study, we integrated pre-amplification and three kinds of sensor systems with CRISPR and therefore established an LSD diagnosis platform with highly adaptable and ultra-sensitive advantages. It was the first CRISPR-powered platform that could identify lumpy skin disease virus from vaccine strains of goat pox virus and sheep pox virus. Its limit of detection (LOD) was one copy/reaction after introducing PCR or recombinase-aided amplification (RAA). Moreover, this platform achieved a satisfactory overall agreement in clinical diagnoses of 50 samples and its reproducibility and accuracy were superior to other qPCR methods we tested. The whole diagnostic procedure, from DNA extraction to the results, could complete in 5 h with a total cost of 1.7-9.6 $/test. Overall, this CRISPR-powered platform provided a novel diagnostic tool for portable, ultra-sensitive, rapid, and highly adaptable disease screening of LSD and may be an effective method to control this transboundary disease's spread.


Asunto(s)
Capripoxvirus , Dermatosis Nodular Contagiosa , Animales , Bovinos , Capripoxvirus/genética , Sistemas CRISPR-Cas , Dermatosis Nodular Contagiosa/diagnóstico , Dermatosis Nodular Contagiosa/genética , Dermatosis Nodular Contagiosa/prevención & control , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Ovinos/genética
5.
Front Vet Sci ; 9: 936581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958309

RESUMEN

Lumpy skin disease (LSD) is a severe disease of bovine characterized by nodules on the skin, mucous membranes, and profuse nasal discharge which causes severe economic losses. In October 2020, an LSD outbreak case was found in Inner Mongolia Autonomous Region, China. A total of 1,206 cattle were sold from the same imported animal quarantine field to 36 farms after the quarantine period finished, and over 30 farmers reported symptoms such as skin scabs found in newly arrived cattle shortly after that. A large-scale LSD outbreak investigation was launched after laboratory diagnosis confirmed LSD. The clinical samples of 1,206 cattle from 36 farms, including 1,206 whole blood, 1,206 oral and nose swabs, and 355 scabs, were collected for the qRT-PCR test. The result showed that 51 whole blood samples (4.23%), 580 swab samples (48.09%), and 350 skin scabs (98.59%) were lumpy skin disease virus (LSDV) positive, 33 of 36 farms were affected. This study aims to provide a basis for LSD epidemiological traceability, movement control, and measures for prevention and control.

6.
Front Microbiol ; 13: 920801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756009

RESUMEN

Porcine epidemic diarrhoea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae. It causes acute watery diarrhoea and vomiting in piglets with high a mortality rate. Currently, the GII genotype, PEDV, possesses a high separation rate in wild strains and is usually reported in immunity failure cases, which indicates a need for a portable and sensitive detection method. Here, reverse transcription-recombinase aided amplification (RT-RAA) was combined with the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas12a system to establish a multiplexable, rapid and portable detection platform for PEDV. The CRISPR RNA (crRNA) against Spike (S) gene of GII PEDV specifically were added into the protocol. This system is suitable for different experimental conditions, including ultra-sensitive fluorescence, visual, UV light, or flow strip detection. Moreover, it exhibits high sensitivity and specificity and can detect at least 100 copies of the target gene in each reaction. The CRISPR/Cas12a detection platform requires less time and represents a rapid, reliable and practical tool for the rapid diagnosis of GII genotype PEDV.

7.
Food Funct ; 11(9): 8354-8368, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32930693

RESUMEN

Recently, we have proposed that quinoa yoghurt (QY) has the anti-diabetic properties based on an in vitro study. Here, its antidiabetic activity was further validated by investigating its hypoglycemic and hypolipidemic influence in high fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The results showed that QY increased the body weights of and reduced the fasting blood glucose levels in T2DM mice. QY significantly (p < 0.05) reduced the serum levels of total cholesterol, triglyceride and LDL-C, while it increased the HDL-C level. In addition, the hepatic glycogen content, and superoxide dismutase, catalase, and glutathione peroxidase activities were significantly (p < 0.05) increased, while lipid peroxidation was remarkably reduced. Sprouted QY had the highest influence on serum oxidation when compared with non-germinated QY. The level of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) were significantly (p < 0.05) decreased, while the level of anti-inflammatory cytokine IL-10 was increased. Histopathological studies showed that QY protected the tissue structure of the liver of T2DM mice. Immunohistochemistry showed that QY increased AKT-2 and AMPK-α2 expressions, while it suppressed p85. The qRT-PCR analysis indicated that QY exerted its hypoglycemic and anti-hyperlipidemic effects through the AKT/AMPK/PI3K signaling pathway. Germination significantly (p < 0.05) influenced the glucose and lipid homeostasis in T2DM mice in such a way that sprouted QY showed the highest hypoglycemic and cholesterol-lowering effects when compared with non-germinated QY.


Asunto(s)
Chenopodium quinoa/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Hiperglucemia/dietoterapia , Hipoglucemiantes/metabolismo , Metabolismo de los Lípidos , Yogur/análisis , Animales , Catalasa/metabolismo , Chenopodium quinoa/química , Chenopodium quinoa/crecimiento & desarrollo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Homeostasis , Humanos , Hiperglucemia/metabolismo , Hipoglucemiantes/análisis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo
8.
Appl Microbiol Biotechnol ; 104(17): 7631-7642, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32715364

RESUMEN

The probiotic efficacy and fermentative ability of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus), a widely used probiotic, is majorly affected by its acid tolerance. Here, we conducted whole-genome sequencing of the high acid-tolerant L. bulgaricus LJJ stored in the laboratory. Compared with the whole genome of low acid-tolerant strain L. bulgaricus ATCC11842, the results show that 16 candidate acid-tolerant genes may be involved in the regulation of the acid tolerance of L. bulgaricus LJJ. Association analysis of candidate acid-tolerant genes and acid-tolerant traits of different L. bulgaricus strains revealed that the three genes dapA, dapH, and lysC are the main reasons for the strong acid tolerance of L. bulgaricus LJJ. The results of real-time quantitative PCR (RT-qPCR) supported this conclusion. KEGG pathway analysis showed that these three acid-tolerant genes are involved in the synthesis of lysine; the synthesis of lysine may confer L. bulgaricus LJJ strong acid tolerance. This study successfully revealed the acid tolerance mechanism of L. bulgaricus LJJ and provides a theoretical basis for the subsequent selection of strains with high acid tolerance for improved probiotic functions. KEY POINTS: • Three genes are identified as acid-tolerant genes, respectively, lysC, dapA, and dapH. • LysC and dapA are the major key genes in the synthesis of lysine. • The synthesis of lysine may confer L. bulgaricus LJJ strong acid tolerance.


Asunto(s)
Lactobacillus delbrueckii , Probióticos , Ácidos/toxicidad , Fermentación , Genómica , Lactobacillus delbrueckii/genética
9.
Mol Cell Probes ; 48: 101451, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31541671

RESUMEN

Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase amplification (RPA) assay for the detection of Brucella. The assay targeted the bcsp31 gene of Brucella, and an RPA exo probe and a pair of primers were selected for assay validation. RPA sensitivity and specificity were evaluated using plasmid standards, Brucella representative strains, and non-Brucella strains. The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis, and could successfully distinguish 18 representative Brucella strains (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae and B. ovis), and four Brucella vaccine strains (A19, S19, S2 and M5). A total of 52 Brucella field strains were detected by real-time PCR and RPA in parallel, and compared with real-time PCR, the sensitivity of the RPA assay was 94% (49/52). Thus, this RPA assay may be a rapid, sensitive, and specific tool for the prevention and control of Brucellosis.


Asunto(s)
Brucella/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/genética , Proteínas Bacterianas/genética , Cartilla de ADN/genética , ADN Bacteriano/genética , Sensibilidad y Especificidad
10.
BMC Vet Res ; 14(1): 27, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29361960

RESUMEN

BACKGROUND: Brucellosis is a widespread zoonotic disease caused by Gram-negative Brucella bacteria. Immunisation with attenuated vaccine is an effective method of prevention, but it can interfere with diagnosis. Live, attenuated Brucella abortus strain 104M has been used for the prevention of human brucellosis in China since 1965. However, at present, no fast and reliable method exists that can distinguish this strain from field strains. Single nucleotide polymorphism (SNP)-based assays offer a new approach for such discrimination. SNP-based minor groove binder (MGB) and Cycleave assays have been used for rapid identification of four Brucella vaccine strains (B. abortus strains S19, A19 and RB51, and B. melitensis Rev1). The main objective of this study was to develop a PCR assay for rapid and specific detection of strain 104M. RESULTS: We developed a SNP-based MGB PCR assay that could successfully distinguish strain 104M from 18 representative strains of Brucella (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae, and B. ovis), four Brucella vaccine strains (A19, S19, S2, M5), and 55 Brucella clinical field strains. The assay gave a negative reaction with four non-Brucella species (Escherichia coli, Pasteurella multocida, Streptococcus suis and Pseudomonas aeruginosa). The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 220 fg for the 104M strain and 76 fg for the single non-104M Brucella strain tested (B. abortus A19). The assay was also reproducible (intra- and inter-assay coefficients of variation = 0.006-0.022 and 0.012-0.044, respectively). CONCLUSIONS: A SNP-based MGB PCR assay was developed that could straightforwardly and unambiguously distinguish B. abortus vaccine strain 104M from non-104M Brucella strains. Compared to the classical isolation and identification approaches of bacteriology, this real-time PCR assay has substantial advantages in terms of simplicity and speed, and also reduces potential exposure to live Brucella. The assay developed is therefore a simple, rapid, sensitive, and specific tool for brucellosis diagnosis and control.


Asunto(s)
Vacuna contra la Brucelosis/genética , Brucella abortus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Animales , Brucella abortus/genética , Brucella abortus/inmunología , Brucelosis/inmunología , ADN Bacteriano , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
J Vet Diagn Invest ; 28(3): 214-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27075847

RESUMEN

Brucellosis is a widespread zoonotic disease caused by Brucella spp. Immunization with attenuated vaccines has proved to be an effective method of prevention; however, it may also interfere with diagnosis. Brucella abortus strain A19, which is homologous to B. abortus strain S19, is widely used for the prevention of bovine brucellosis in China. For effective monitoring of the control of brucellosis, it is essential to distinguish A19 from field strains. Single-nucleotide polymorphism-based assays offer a new approach to such discrimination studies. In the current study, we developed a cycleave PCR assay that successfully distinguished attenuated vaccine strains A19 and S19 from 22 strains of B. abortus and 57 strains of 5 other Brucella species. The assay gave a negative reaction with 4 non-Brucella species. The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 7.6 fg for the A19 strain and 220 fg for the single non-A19/non-S19 Brucella strain tested (B. abortus 104M). The assay was also reproducible (intra- and interassay coefficients of variation: 0.003-0.01 and 0.004-0.025, respectively). The cycleave assay gave an A19/S19-specific reaction in 3 out of 125 field serum samples, with the same 3 samples being positive in an alternative A19/S19-specific molecular assay. The cycleave assay gave a total of 102 Brucella-specific reactions (3 being the A19/S19-specific reactions), whereas an alternative Brucella-specific assay gave 92 positive reactions (all also positive in the cycleave assay). Therefore, this assay represents a simple, rapid, sensitive, and specific tool for use in brucellosis control.


Asunto(s)
Vacuna contra la Brucelosis/administración & dosificación , Brucella abortus/aislamiento & purificación , Brucelosis/veterinaria , Animales , Brucella abortus/genética , Brucella abortus/inmunología , Brucelosis/sangre , Brucelosis/microbiología , Brucelosis/prevención & control , Bovinos , China , Cabras , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Valor Predictivo de las Pruebas , Porcinos , Vacunación/veterinaria
12.
Vet J ; 201(3): 427-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25011712

RESUMEN

Immunisation with attenuated Brucella spp. vaccines prevents brucellosis, but may also interfere with diagnosis. In this study, a duplex PCR was developed to distinguish Brucella suis vaccine strain S2 from field strains of B. suis biovar 1 and other Brucella spp. The PCR detected 60 fg genomic DNA of B. suis S2 or biovar 1 field strains and was able to distinguish B. suis S2 and wild-type strains of B. suis biovar 1 among 76 field isolates representing all the common species and biovars, as well as four vaccine strains, of Brucella.


Asunto(s)
Vacuna contra la Brucelosis/inmunología , Brucella suis/inmunología , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Brucella/inmunología , Brucelosis/microbiología , Brucelosis/prevención & control , Brucelosis/veterinaria , Rumiantes , Porcinos , Vacunas Atenuadas/inmunología
13.
Sci Signal ; 5(212): ra16, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22355189

RESUMEN

The threat of a new influenza pandemic has existed since 1997, when the highly pathogenic H5N1 strain of avian influenza A virus infected humans in Hong Kong and spread across Asia, where it continued to infect poultry and people. The human mortality rate of H5N1 infection is about 60%, whereas that of seasonal H1N1 infection is less than 0.1%. The high mortality rate associated with H5N1 infection is predominantly a result of respiratory failure caused by acute lung injury; however, how viral infection contributes to this disease pathology is unclear. Here, we used electron microscopy to show the accumulation of autophagosomes in H5N1-infected lungs from a human cadaver and mice, as well as in infected A549 human epithelial lung cells. We also showed that H5N1, but not seasonal H1N1, induced autophagic cell death in alveolar epithelial cells through a pathway involving the kinase Akt, the tumor suppressor protein TSC2, and the mammalian target of rapamycin. Additionally, we suggest that the hemagglutinin protein of H5N1 may be responsible for stimulating autophagy. When applied prophylactically, reagents that blocked virus-induced autophagic signaling substantially increased the survival rate of mice and substantially ameliorated the acute lung injury and mortality caused by H5N1 infection. We conclude that the autophagic cell death of alveolar epithelial cells likely plays a crucial role in the high mortality rate of H5N1 infection, and we suggest that autophagy-blocking agents might be useful as prophylactics and therapeutics against infection of humans by the H5N1 virus.


Asunto(s)
Autofagia/fisiología , Subtipo H5N1 del Virus de la Influenza A , Gripe Humana/patología , Pulmón/ultraestructura , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia , Western Blotting , Línea Celular , Cartilla de ADN/genética , Células Epiteliales/fisiología , Técnicas de Silenciamiento del Gen , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/farmacología , Humanos , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteína Oncogénica v-akt/metabolismo , Fagosomas/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA