Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Angew Chem Int Ed Engl ; 63(16): e202319828, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358301

RESUMEN

In the search for novel, effective inhibitors of High-Mobility Group Box1 (HMGB1)-a protein involved in various inflammatory and autoimmune diseases as well as in cancer-we herein discovered a set of anti-HMGB1 G-quadruplex(G4)-forming aptamers by using an in vitro selection procedure applied to a doped library of guanine-rich oligonucleotides. The selected DNA sequences were then studied in a pseudo-physiological buffer mimicking the extracellular medium, where HMGB1 exerts its pathological activity, using spectroscopic, electrophoretic, and chromatographic techniques. All the oligonucleotides proved to fold into monomeric G4s and in some cases also dimeric species, stable at physiological temperature. Remarkably, the protein preferentially recognized the sequences forming dimeric parallel G4 structures, as evidenced by a properly designed chemiluminescent binding assay which also highlighted a good selectivity of these aptamers for HMGB1. Moreover, all aptamers showed anti-HMGB1 activity, inhibiting protein-induced cell migration. The acquired data allowed identifying L12 as the best anti-HMGB1 aptamer, featured by high thermal and enzymatic stability, no toxicity at least up to 5 µM concentration on healthy cells, along with potent anti-HMGB1 activity (IC50 ca. 28 nM) and good binding affinity for the protein, thus indicating it as a very promising lead candidate for in vivo studies.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Proteína HMGB1 , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química
2.
Int J Biol Macromol ; 224: 344-357, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270405

RESUMEN

To develop efficient anticancer theranostic systems, we studied the interaction between a cyanine dye, analogue of thiazole orange (named CyOH), and two G-quadruplex-forming aptamers, V7t1 and 3R02, recognizing the Vascular Endothelial Growth Factor 165 (VEGF165) - an angiogenic protein overexpressed in cancer cells, responsible for the rapid growth and metastases of solid tumours. We demonstrated, by exploiting different biophysical techniques - i.e. gel electrophoresis, circular dichroism (CD), UV-vis and fluorescence spectroscopy - that this cyanine interacted with both aptamers giving a marked fluorescence light-up only when bound to their dimeric forms. Interestingly, both oligonucleotides recognized VEGF165 with higher affinity when adopting dimeric G-quadruplexes, largely prevalent over their monomeric forms in pseudo-physiological conditions. Notably, the fluorescence light-up produced by the probe was maintained when the dimeric aptamer-CyOH complexes bound to the target protein. These complexes, tested on MCF-7 cancer cells using non-tumorigenic MCF-10A cells as control, were effectively internalized in cells and colocalized with a fluorescently-labelled anti-VEGF-A antibody, allowing both recognition and detection of the target. Our experiments showed that the studied systems are promising tools for anticancer theranostic strategies, combining the therapeutic potential of the G4-forming anti-VEGF aptamers with the diagnostic efficacy of the cyanine selective fluorescence light-up.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Aptámeros de Nucleótidos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Pharmaceutics ; 14(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365179

RESUMEN

G-quadruplexes turned out to be important targets for the development of novel targeted anticancer/antiviral therapies. More than 3000 G-quadruplex small-molecule ligands have been described, with most of them exerting anticancer/antiviral activity by inducing telomeric damage and/or altering oncogene or viral gene expression in cancer cells and viruses, respectively. For some ligands, in-depth NMR and/or crystallographic studies were performed, providing detailed knowledge on their interactions with diverse G-quadruplex targets. Here, the PDB-deposited NMR and crystal structures of the complexes between telomeric, oncogenic or viral G-quadruplexes and small-molecule ligands, of both organic and metal-organic nature, have been summarized and described based on the G-quadruplex target, from telomeric DNA and RNA G-quadruplexes to DNA oncogenic G-quadruplexes, and finally to RNA viral G-quadruplexes. An overview of the structural details of these complexes is here provided to guide the design of novel ligands targeting more efficiently and selectively cancer- and virus-related G-quadruplex structures.

4.
ChemistryOpen ; 11(5): e202200090, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35608081

RESUMEN

DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Cromatografía de Afinidad , Ligandos
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638964

RESUMEN

G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias de la Mama/metabolismo , ADN Forma B/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , G-Cuádruplex , Imidas/química , Imidas/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Conformación Molecular , Naftalenos/química , Naftalenos/metabolismo , Adenocarcinoma/patología , Sitios de Unión , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Femenino , Colorantes Fluorescentes/farmacología , Humanos , Imidas/farmacología , Concentración 50 Inhibidora , Sustancias Intercalantes/farmacología , Ligandos , Células MCF-7 , Espectroscopía de Resonancia Magnética/métodos , Simulación del Acoplamiento Molecular/métodos , Naftalenos/farmacología
6.
Molecules ; 26(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200901

RESUMEN

Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.


Asunto(s)
Nanoestructuras/química , Ácidos Nucleicos de Péptidos/química , Péptidos/química , ADN/química , ARN/química
7.
Chemistry ; 27(34): 8832-8845, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33890349

RESUMEN

Stilbenoids are natural compounds endowed with several biological activities, including cardioprotection and cancer prevention. Among them, (±)-trans-δ-viniferin, deriving from trans-resveratrol dimerization, was investigated in its ability to target DNA duplex and G-quadruplex structures by exploiting NMR spectroscopy, circular dichroism, fluorescence spectroscopy and molecular docking. (±)-trans-δ-Viniferin proved to bind both the minor and major grooves of duplexes, whereas it bound the 3'- and 5'-ends of a G-quadruplex by stacking on the outer quartets, accompanied by rearrangement of flanking residues. Specifically, (±)-trans-δ-viniferin demonstrated higher affinity for the investigated DNA targets than its monomeric counterpart. Additionally, the methoxylated derivatives of (±)-trans-δ-viniferin and trans-resveratrol, i. e. (±)-pterostilbene-trans-dihydrodimer and trans-pterostilbene, respectively, were evaluated, revealing similar binding modes, affinities and stoichiometries with the DNA targets as their parent analogues. All tested compounds were cytotoxic at µM concentration on several cancer cell lines, showing DNA damaging activity consistent with their ability to tightly interact with duplex and G-quadruplex structures.


Asunto(s)
G-Cuádruplex , Estilbenos , Dicroismo Circular , ADN , Simulación del Acoplamiento Molecular , Resveratrol
8.
J Med Chem ; 64(7): 3578-3603, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33751881

RESUMEN

In the context of developing efficient anticancer therapies aimed at eradicating any sort of tumors, G-quadruplexes represent excellent targets. Small molecules able to interact with G-quadruplexes can interfere with cell pathways specific of tumors and common to all cancers. Naphthalene diimides (NDIs) are among the most promising, putative anticancer G-quadruplex-targeting drugs, due to their ability to simultaneously target multiple G-quadruplexes and their strong, selective in vitro and in vivo anticancer activity. Here, all the available biophysical, biological, and structural data concerning NDIs targeting G-quadruplexes were systematically analyzed. Structure-activity correlations were obtained by analyzing biophysical data of their interactions with G-quadruplex targets and control duplex structures, in parallel to biological data concerning the antiproliferative activity of NDIs on cancer and normal cells. In addition, NDI binding modes to G-quadruplexes were discussed in consideration of the structures and properties of NDIs by in-depth analysis of the available structural models of G-quadruplex/NDI complexes.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , G-Cuádruplex , Naftalimidas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Naftalimidas/química , Naftalimidas/metabolismo , Relación Estructura-Actividad
9.
Med Res Rev ; 41(1): 464-506, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038031

RESUMEN

The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , ADN , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular
10.
Pharmacol Ther ; 217: 107649, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777331

RESUMEN

First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Fibrinolíticos/química , Fibrinolíticos/farmacología , G-Cuádruplex , Trombina/metabolismo , Glicósidos/química , Humanos , Unión Proteica/fisiología , Conformación Proteica , Azúcares/química , Trombina/antagonistas & inhibidores , Trombina/química
11.
Molecules ; 25(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182593

RESUMEN

Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.


Asunto(s)
Aptámeros de Nucleótidos/química , G-Cuádruplex , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Antiinflamatorios/química , Anticoagulantes/química , Antineoplásicos/química , Antivirales/química , Complejo CD3/química , Moléculas de Adhesión Celular/química , ADN/química , Dimerización , Humanos , Inmunoglobulina M/química , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-met/química , Pirrolidinas/química , Proteínas Tirosina Quinasas Receptoras/química , Receptores de Antígenos de Linfocitos T/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vitronectina/química , Nucleolina
12.
Genes (Basel) ; 9(11)2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30469382

RESUMEN

DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron⁻sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA