Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853998

RESUMEN

Deep learning approaches have made significant advances in predicting cell type-specific chromatin patterns from the identity and arrangement of transcription factor (TF) binding motifs. However, most models have been applied in unperturbed contexts, precluding a predictive understanding of how chromatin state responds to TF perturbation. Here, we used transfer learning to train and interpret deep learning models that use DNA sequence to predict, with accuracy approaching experimental reproducibility, how the concentration of two dosage-sensitive TFs (TWIST1, SOX9) affects regulatory element (RE) chromatin accessibility in facial progenitor cells. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and strongly predict unperturbed accessibility. In contrast, motifs with low-affinity or homotypic binding distributed throughout REs lead to sensitive responses with minimal contributions to unperturbed accessibility. Both buffering and sensitizing features show signatures of purifying selection. We validated these predictive sequence features using reporter assays and showed that a biophysical model of TF-nucleosome competition can explain the sensitizing effect of low-affinity motifs. Our approach of combining transfer learning and quantitative measurements of the chromatin response to TF dosage therefore represents a powerful method to reveal additional layers of the cis-regulatory code.

2.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262408

RESUMEN

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Asunto(s)
Proteínas de Unión al ADN , Desarrollo Embrionario , Factores de Transcripción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Humanos , Animales , Ratones , Extremidades/crecimiento & desarrollo
3.
Nat Commun ; 14(1): 7436, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973980

RESUMEN

The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.


Asunto(s)
Craneosinostosis , Estudio de Asociación del Genoma Completo , Niño , Humanos , Animales , Ratones , Cráneo/diagnóstico por imagen , Craneosinostosis/genética , Huesos Faciales , Encéfalo/diagnóstico por imagen
4.
Nat Genet ; 55(11): 1866-1875, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857933

RESUMEN

Most signals in genome-wide association studies (GWAS) of complex traits implicate noncoding genetic variants with putative gene regulatory effects. However, currently identified regulatory variants, notably expression quantitative trait loci (eQTLs), explain only a small fraction of GWAS signals. Here, we show that GWAS and cis-eQTL hits are systematically different: eQTLs cluster strongly near transcription start sites, whereas GWAS hits do not. Genes near GWAS hits are enriched in key functional annotations, are under strong selective constraint and have complex regulatory landscapes across different tissue/cell types, whereas genes near eQTLs are depleted of most functional annotations, show relaxed constraint, and have simpler regulatory landscapes. We describe a model to understand these observations, including how natural selection on complex traits hinders discovery of functionally relevant eQTLs. Our results imply that GWAS and eQTL studies are systematically biased toward different types of variant, and support the use of complementary functional approaches alongside the next generation of eQTL studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Regulación de la Expresión Génica/genética , Sitios de Carácter Cuantitativo/genética , Expresión Génica , Polimorfismo de Nucleótido Simple/genética
5.
Science ; 381(6658): eade6289, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561850

RESUMEN

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factor 6 Similar a Kruppel , Melaninas , Melanocitos , Melanosomas , Pigmentación de la Piel , Humanos , Melaninas/biosíntesis , Melaninas/genética , Melanocitos/metabolismo , Melanosomas/metabolismo , Pigmentación de la Piel/genética , Estudio de Asociación del Genoma Completo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Endosomas/metabolismo , Animales , Ratones , Línea Celular Tumoral
6.
bioRxiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37398193

RESUMEN

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how 'Coordinator', a long DNA motif comprised of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, while HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in shared regulation of genes involved in cell-type and positional identities, and ultimately shapes facial morphology and evolution.

7.
Nat Genet ; 55(5): 841-851, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024583

RESUMEN

Transcriptional regulation exhibits extensive robustness, but human genetics indicates sensitivity to transcription factor (TF) dosage. Reconciling such observations requires quantitative studies of TF dosage effects at trait-relevant ranges, largely lacking so far. TFs play central roles in both normal-range and disease-associated variation in craniofacial morphology; we therefore developed an approach to precisely modulate TF levels in human facial progenitor cells and applied it to SOX9, a TF associated with craniofacial variation and disease (Pierre Robin sequence (PRS)). Most SOX9-dependent regulatory elements (REs) are buffered against small decreases in SOX9 dosage, but REs directly and primarily regulated by SOX9 show heightened sensitivity to SOX9 dosage; these RE responses partially predict gene expression responses. Sensitive REs and genes preferentially affect functional chondrogenesis and PRS-like craniofacial shape variation. We propose that such REs and genes underlie the sensitivity of specific phenotypes to TF dosage, while buffering of other genes leads to robust, nonlinear dosage-to-phenotype relationships.


Asunto(s)
Síndrome de Pierre Robin , Factor de Transcripción SOX9 , Humanos , Factor de Transcripción SOX9/genética , Síndrome de Pierre Robin/genética , Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Fenotipo
8.
Nat Genet ; 54(8): 1133-1144, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817986

RESUMEN

Gene regulatory networks ensure that important genes are expressed at precise levels. When gene expression is sufficiently perturbed, it can lead to disease. To understand how gene expression disruptions percolate through a network, we must first map connections between regulatory genes and their downstream targets. However, we lack comprehensive knowledge of the upstream regulators of most genes. Here, we developed an approach for systematic discovery of upstream regulators of critical immune factors-IL2RA, IL-2 and CTLA4-in primary human T cells. Then, we mapped the network of the target genes of these regulators and putative cis-regulatory elements using CRISPR perturbations, RNA-seq and ATAC-seq. These regulators form densely interconnected networks with extensive feedback loops. Furthermore, this network is enriched for immune-associated disease variants and genes. These results provide insight into how immune-associated disease genes are regulated in T cells and broader principles about the structure of human gene regulatory networks.


Asunto(s)
Redes Reguladoras de Genes , Genes Reguladores , Linfocitos T , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Redes Reguladoras de Genes/genética , Humanos , Linfocitos T/inmunología
9.
Annu Rev Genomics Hum Genet ; 23: 383-412, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35483406

RESUMEN

Variations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.


Asunto(s)
Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
10.
PLoS Genet ; 17(8): e1009695, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411106

RESUMEN

Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.


Asunto(s)
Población Negra/genética , Cara/anatomía & histología , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo , Población Blanca/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Polimorfismo de Nucleótido Simple , Tanzanía , Adulto Joven
11.
PLoS Genet ; 17(5): e1009528, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983923

RESUMEN

The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.


Asunto(s)
Identificación Biométrica , Cara/anatomía & histología , Genómica , Imagenología Tridimensional , Herencia Multifactorial/genética , Fenotipo , Hermanos , Adolescente , Niño , Preescolar , Anomalías Craneofaciales/genética , Conjuntos de Datos como Asunto , Europa (Continente)/etnología , Cara/anomalías , Cara/embriología , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Población Blanca/genética
12.
Nat Genet ; 53(6): 830-839, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821002

RESUMEN

Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.


Asunto(s)
Encéfalo/anatomía & histología , Cara/anatomía & histología , Patrón de Herencia/genética , Adulto , Anciano , Conducta , Cognición , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Mentales/genética , Persona de Mediana Edad , Análisis Multivariante
13.
Nat Genet ; 53(4): 467-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731941

RESUMEN

Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for nongenetic confounding factors. We differentiated these cells into cranial neural crest cells, the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific sixfold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.


Asunto(s)
Quimera/genética , Síndrome de Ellis-Van Creveld/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Cresta Neural/metabolismo , Pan troglodytes/genética , Cráneo/metabolismo , Animales , Evolución Biológica , Diferenciación Celular , Quimera/metabolismo , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Femenino , Expresión Génica , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Masculino , Ratones , Ratones Noqueados , Cresta Neural/patología , Pan troglodytes/anatomía & histología , Pan troglodytes/metabolismo , Fenotipo , Transducción de Señal , Cráneo/anatomía & histología , Especificidad de la Especie , Tetraploidía
15.
Front Genet ; 12: 626403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692830

RESUMEN

Unaffected relatives of individuals with non-syndromic cleft lip with or without cleft palate (NSCL/P) show distinctive facial features. The presence of this facial endophenotype is potentially an expression of underlying genetic susceptibility to NSCL/P in the larger unselected population. To explore this hypothesis, we first partitioned the face into 63 partially overlapping regions representing global-to-local facial morphology and then defined endophenotypic traits by contrasting the 3D facial images from 264 unaffected parents of individuals with NSCL/P versus 3,171 controls. We observed distinct facial features between parents and controls across 59 global-to-local facial segments at nominal significance (p ≤ 0.05) and 52 segments at Bonferroni corrected significance (p < 1.2 × 10-3), respectively. Next, we quantified these distinct facial features as univariate traits in another dataset of 8,246 unaffected European individuals and performed a genome-wide association study. We identified 29 independent genetic loci that were associated (p < 5 × 10-8) with at least one of the tested endophenotypic traits, and nine genetic loci also passed the study-wide threshold (p < 8.47 × 10-10). Of the 29 loci, 22 were in proximity of loci previously associated with normal facial variation, 18 were near genes that show strong evidence in orofacial clefting (OFC), and another 10 showed some evidence in OFC. Additionally, polygenic risk scores for NSCL/P showed associations with the endophenotypic traits. This study thus supports the hypothesis of a shared genetic architecture of normal facial development and OFC.

16.
Elife ; 102021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33587031

RESUMEN

Genome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. We describe UK Biobank GWAS results for three molecular traits-urate, IGF-1, and testosterone-with better-understood biology than most other complex traits. We find that many of the most significant hits are readily interpretable. We observe huge enrichment of associations near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of each trait, including differences in testosterone regulation between females and males. At the same time, even these molecular traits are highly polygenic, with many thousands of variants spread across the genome contributing to trait variance. In summary, for these three molecular traits we identify strong enrichment of signal in putative core gene sets, even while most of the SNP-based heritability is driven by a massively polygenic background.


Asunto(s)
Estudio de Asociación del Genoma Completo , Factor I del Crecimiento Similar a la Insulina/genética , Herencia Multifactorial , Testosterona/sangre , Ácido Úrico/sangre , Bases de Datos Genéticas , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores Sexuales , Reino Unido , Población Blanca/genética
17.
Nat Genet ; 53(1): 45-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33288918

RESUMEN

The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.


Asunto(s)
Cara/anatomía & histología , Estudio de Asociación del Genoma Completo , Acetilación , Elementos de Facilitación Genéticos/genética , Epistasis Genética , Extremidades/embriología , Cara/embriología , Sitios Genéticos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metaanálisis como Asunto , Análisis Multivariante , Cresta Neural/citología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Cráneo/embriología , Reino Unido , Estados Unidos
18.
Genome Res ; 30(6): 860-873, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32461223

RESUMEN

Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.


Asunto(s)
Cromosomas Humanos Y , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Ligados a Y , Transcriptoma , Cromosomas Humanos X/genética , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica/métodos , Genes Ligados a X , Humanos , Masculino , MicroARNs/genética , Especificidad de Órganos/genética
19.
Proc Natl Acad Sci U S A ; 116(51): 25677-25687, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31754036

RESUMEN

Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.


Asunto(s)
Diferenciación Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas , Gónadas , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Femenino , Células Germinativas/metabolismo , Células Germinativas/fisiología , Gónadas/citología , Gónadas/fisiología , Masculino , Ratones , Neoplasias Ováricas/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Porcinos , Teratoma/genética , Neoplasias Testiculares/genética
20.
Science ; 365(6450)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31320509

RESUMEN

Sex differences abound in human health and disease, as they do in other mammals used as models. The extent to which sex differences are conserved at the molecular level across species and tissues is unknown. We surveyed sex differences in gene expression in human, macaque, mouse, rat, and dog, across 12 tissues. In each tissue, we identified hundreds of genes with conserved sex-biased expression-findings that, combined with genomic analyses of human height, explain ~12% of the difference in height between females and males. We surmise that conserved sex biases in expression of genes otherwise operating equivalently in females and males contribute to sex differences in traits. However, most sex-biased expression arose during the mammalian radiation, which suggests that careful attention to interspecies divergence is needed when modeling human sex differences.


Asunto(s)
Expresión Génica , Caracteres Sexuales , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Perros , Evolución Molecular , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratas , Factores Sexuales , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA