Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 88(4): 2245-2259, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36753730

RESUMEN

Catalytic reduction reactions using methanol as a transfer hydrogenating agent is gaining significant attention because this simple alcohol is inexpensive and produced on a bulk scale. Herein, we report the catalytic utilization of methanol as a hydrogen source for the reduction of different functional organic compounds such as nitroarenes, olefins, and carbonyl compounds. The key to the success of this transformation is the use of a commercially available Pt/C catalyst, which enabled the transfer hydrogenation of a series of simple and functionalized nitroarenes-to-anilines, alkenes-to-alkanes, and aldehydes-to-alcohols using methanol as both the solvent and hydrogen donor. The practicability of this Pt-based protocol is showcased by demonstrating catalyst recycling and reusability as well as reaction upscaling. In addition, the Pt/C catalytic system was also adaptable for the N-methylation and N-alkylation of anilines via the borrowing hydrogen process. This work provides a simple and flexible approach to prepare a variety of value-added products from readily available methanol, Pt/C, and other starting materials.

2.
ACS Omega ; 7(23): 19804-19815, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721941

RESUMEN

Heterogeneous iron-based catalysts governing selectivity for the reduction of nitroarenes and aldehydes have received tremendous attention in the arena of catalysis, but relatively less success has been achieved. Herein, we report a green strategy for the facile synthesis of a lignin residue-derived carbon-supported magnetic iron (γ-Fe2O3/LRC-700) nanocatalyst. This active nanocatalyst exhibits excellent activity and selectivity for the hydrogenation of nitroarenes to anilines, including pharmaceuticals (e.g., flutamide and nimesulide). Challenging and reducible functionalities such as halogens (e.g., chloro, iodo, and fluoro) and ketone, ester, and amide groups were tolerated. Moreover, biomass-derived aldehyde (e.g., furfural) and other aromatic aldehydes were also effective for the hydrogenation process, often useful in biomedical sciences and other important areas. Before and after the reaction, the γ-Fe2O3/LRC-700 nanocatalyst was thoroughly characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Additionally, the γ-Fe2O3/LRC-700 nanocatalyst is stable and easily separated using an external magnet and recycled up to five cycles with no substantial drop in the activity. Eventually, sustainable and green credentials for the hydrogenation reactions of 4-nitrobenzamide to 4-aminobenzamide and benzaldehyde to benzyl alcohol were assessed with the help of the CHEM21 green metrics toolkit.

3.
Chemosphere ; 286(Pt 2): 131687, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34343919

RESUMEN

Jute sticks obtained after the extraction of jute fiber are an excellent biomass feedstock with a significant amount of carbohydrates that makes it an attractive resource for sustainable energy generation. However, the high lignin content in the jute stick hinders the cellulosic component of the cell wall from enzymatic hydrolysis.This work demonstrates the lignin degradation of jute stick biomass by Trametes maxima laccase in the presence of mediator Hydroxybenzotriazole and improvement in its subsequent saccharification. Lignin component in jute stick is reduced by 21.8% in a single reaction treatment with laccase-mediator compared to the untreated jute stick sample used as control. The yield of fermentable sugar is increased by 19.5% that verifies enhanced saccharification after lignin removal. Delignification of jute stick was corroborated through different analytical techniques. The Pyrolysis gas chromatography/mass spectrometry results further confirms abundance of S lignin unit in the jute stick compared to the H and G unit and modification in lignin polymer as a change in the syringyl-to-guaiacyl ratio. Hence, this work demonstrates that jute stick can be effectively delignified using biocatalyst-mediator system and utilized as biomass source, thus contributing in circular bio-economy through waste valorization.


Asunto(s)
Lacasa , Azúcares , Biomasa , Carbohidratos , Hidrólisis , Lignina , Polyporaceae , Trametes
4.
Int J Biol Macromol ; 154: 538-544, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32194122

RESUMEN

Effective management and the valorization of agro-industrial lignocellulosic feedstocks can only be realized if a versatile cellulase cocktail is developed that can release glucose at affordable cost irrespective of biomass type. In the present study the flexibility of using cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerizing multiple agro-industrial lignocellulosic feedstocks was explored. Five different dilute acid pretreated biomasses were evaluated and cellulase loading was done at 25 mg protein/g cellulose content. After 72 h of hydrolysis at 55 °C and pH 4.5, corn cob and rice straw emerged as the easiest and toughest substrates with saccharification yield of 83.9 ± 1.17 and 35.5 ± 1.16% respectively from their cellulose fraction. Addition of PEG 6000 could retain >65% of all mono-component enzymes present in cellulase cocktail. Structural elucidation of biomasses gave an insight about key features responsible for variable recalcitrance in the different agro-industrial feedstock. Cellulose hydrolysis showed a significant negative correlation in the order of Cr I > S/G ratio > ash content. The chemical composition of lignin had a major impact on enzyme-lignin interactions. Higher H lignin content and lower S/G ratio promoted enzyme desorption, thereby increasing the likelihood of their recycling and reuse.


Asunto(s)
Celulasa/genética , Celulasa/metabolismo , Lignina/química , Lignina/metabolismo , Mutación , Polimerizacion , Talaromyces/enzimología , Agricultura , Hidrólisis , Industrias
5.
J Org Chem ; 84(23): 15389-15398, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31702155

RESUMEN

Herein, we report commercially available carbon-supported-palladium (Pd/C)-catalyzed N-methylation of nitroarenes and amines using MeOH as both a C1 and a H2 source. This transformation proceeds with high atom-economy and in an environmentally friendly way via borrowing hydrogen mechanism. A total of >30 structurally diverse N-methylamines, including bioactive compounds, were selectively synthesized with isolated yields of up to 95%. Furthermore, selective N-methylation and deuteration of nimesulide, a nonsteroidal anti-inflammatory drug, were realized through the late-stage functionalization.


Asunto(s)
Aminas/química , Carbono/química , Metanol/química , Nitrocompuestos/química , Paladio/química , Hidrocarburos Policíclicos Aromáticos/química , Antiinflamatorios no Esteroideos/química , Catálisis , Descubrimiento de Drogas , Metilación , Sulfonamidas/química
6.
ChemSusChem ; 10(10): 2267-2273, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28425669

RESUMEN

We introduce the concept of using site-specific sulfation of various lignins for increasing their aqueous solubility and thereby their processability. Using p-nitrophenylsulfate as a sulfate source and an aryl sulfotransferase enzyme as catalyst, lignins are easily sulfated at ambient conditions. We demonstrate the specific sulfation of phenolic hydroxyl groups on five different lignins: Indulin AT (Kraft softwood), Protobind 1000 (mixed wheat straw/Sarkanda grass soda) and three organosolv lignins. The reaction proceeds smoothly and the increase in solubility is visible to the naked eye. We then examine the reaction kinetics, and show that these are easily monitored qualitatively and quantitatively using UV/Vis spectroscopy. The UV/Vis results are validated with 31 P NMR spectroscopy of the lignin phenol groups after derivatization with phosphorylation reagent II. In general, the results are more significant with organosolv lignins, as Kraft and soda lignins are produced from aqueous lignocellulose extraction processes.


Asunto(s)
Arilsulfotransferasa/química , Lignina/química , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta , Agua/química
7.
ChemSusChem ; 10(5): 1022-1032, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28139063

RESUMEN

We explored the depolymerisation of several lignins in liquid ammonia at relatively high temperatures and pressures (120 °C and 88 bar). Five different lignins were tested: Indulin AT kraft, Protobind 1000 soda, wheat straw organosolv, poplar organosolv and elephant grass-milled wood lignin (EG MWL). In pure liquid ammonia, all lignins underwent slow incorporation of nitrogen into their structure, resulting in higher molecular weight and polydispersity index. Subsequently, we show a reductive depolymerisation by solvated electrons at room temperature by adding sodium metal to the liquid ammonia without any external hydrogen donor. The netto yields of bio-oil are low for technical lignins (10-23 %), but with higher yields of alkylphenols. In the case of native EG MWL, netto yields of 40 % bio-oil were achieved. Finally, when the room temperature method was applied to poplar wood fibre, we observe improved delignification upon the addition of sodium compared to poplar wood fractionation in pure liquid ammonia.


Asunto(s)
Amoníaco/química , Lignina/química , Polimerizacion , Solventes/química , Electrones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA