Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139025

RESUMEN

"Heptil" (unsymmetrical dimethylhydrazine-UDMH) is extensively employed worldwide as a propellant for rocket engines. However, UDMH constantly loses its properties as a result of its continuous and uncontrolled absorption of moisture, which cannot be rectified. This situation threatens its long-term usability. UDMH is an exceedingly toxic compound (Hazard Class 1), which complicates its transportation and disposal. Incineration is currently the only method used for its disposal, but this process generates oxidation by-products that are even more toxic than the original UDMH. A more benign approach involves its immediate reaction with a formalin solution to form 1,1-dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding substantial amounts of nitrogen oxides. This review seeks to shift the focus of MDH from incineration towards its application in the synthesis of relatively non-toxic and readily available analogs of various pharmaceutical substances. We aim to bring the attention of the international chemical community to the distinctive properties of MDH, as well as other hydrazones (such as glyoxal, acrolein, crotonal, and meta-crolyl), wherein each structural fragment can initiate unique transformations that have potential applications in molecular design, pharmaceutical research, and medicinal chemistry.


Asunto(s)
Acroleína , Glioxal , Dimetilhidrazinas/química , Formaldehído , Técnicas de Química Sintética
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685883

RESUMEN

1,1-Dimethylhydrazine (Heptil, rocket fuel (UDMH)) is characterized by extremely high toxicity, teratogenicity and the ability to constantly absorb water from the atmosphere, losing its energy characteristics. In this regard, as well as due to the alternative fuel ("Angara") transition, there is a need for UDMH utilization in huge amounts. A more benign approach involves its immediate reaction with a formalin solution to form 1,1-dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding a substantial amount of nitrogen oxides. We propose an alternative to incineration by involving MDH in organic synthesis. We studied the reactions of MDH and its analog N,N-dimethyl-2-(methylenamino)ethane-1-amine (MDEA) with available CH-acids: tetracyanoethylated ketones (TCEKs) based on cyclohexanone, 4-propylcyclohexanone, 2-methylcyclohexanone, cyclododecanone and tetracyanoethane. The structures synthesized were confirmed by IR, 1H, 13C NMR and mass spectroscopy methods. MDH-based adducts were also identified by X-ray structural analysis. TCEKs and MDH, as well as TCEK based on cyclohexanone and MDEA, form bi- and tricyclic structures: pyrrolo [3,4c]-quinolines (using TCEKs based on cyclohexanone and 4-propylcyclohexanone), epiminomethanoquinoline-3,4-dicarbonitrile (using TCEK based on 2-methylcyclohexanone) and cyclododec[b]pyran-3,4-dicarbonitrile (using TCEK based on cyclododecanone). MDH and TCNEH2 formed a pyrrole derivative. Thus, we synthesized the structures that are of interest for molecular design and pharmaceutical chemistry.


Asunto(s)
Ciclohexanonas , Quinolinas , Cetonas
3.
J Org Chem ; 86(6): 4398-4404, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33629842

RESUMEN

Recently, reactions of allylidenhydrazones with tetracyanoethylene were found to lead to cyclobutanes-products of usually unfavorable (2 + 2) cycloaddition. Herein we computationally demonstrate that the (4 + 2) product of this reaction is severely destabilized by incomplete C-N bond formation, arising from a complex interplay of substituent electronic effects. We show how destabilization of a single bond in the front-runner product averts its formation and redirects chemical reaction toward an uncharacteristic pathway.


Asunto(s)
Reacción de Cicloadición
4.
Beilstein J Org Chem ; 12: 2093-2098, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829915

RESUMEN

An efficient diastereoselective approach for the synthesis of functionalized 3,4-dihydro-2H-pyran-4-carboxamides with variable frame was developed based on the reaction of available 4-oxoalkane-1,1,2,2-tetracarbonitriles (adducts of TCNE and ketones) with aldehydes in an acidic media. An unusual process of quasi hydrolysis of the cyano group was observed in the course of the described regio- and diastereoselective transformation.

5.
J Org Chem ; 81(15): 6402-8, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27384963

RESUMEN

A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA