Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Psychiatry ; 22(2): 227-234, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27240534

RESUMEN

The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. Although the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21-day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-l-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral amygdala (BLA), LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons or in lateral amygdala stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at-risk populations.


Asunto(s)
Antidepresivos/farmacología , Ansiedad/fisiopatología , Acetilcarnitina/metabolismo , Acetilcarnitina/uso terapéutico , Amígdala del Cerebelo/fisiología , Animales , Antidepresivos/metabolismo , Complejo Nuclear Basolateral/fisiología , Encéfalo/fisiopatología , Complejo Nuclear Corticomedial , Dendritas , Depresión , Miedo/fisiología , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Estrés Psicológico/fisiopatología
2.
Mol Psychiatry ; 20(6): 755-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25178162

RESUMEN

Why do some individuals succumb to stress and develop debilitating psychiatric disorders, whereas others adapt well in the face of adversity? There is a gap in understanding the neural bases of individual differences in the responses to environmental factors on brain development and functions. Here, using a novel approach for screening an inbred population of laboratory animals, we identified two subpopulations of mice: susceptible mice that show mood-related abnormalities compared with resilient mice, which cope better with stress. This approach combined with molecular and behavioral analyses, led us to recognize, in hippocampus, presynaptic mGlu2 receptors, which inhibit glutamate release, as a stress-sensitive marker of individual differences to stress-induced mood disorders. Indeed, genetic mGlu2 deletion in mice results in a more severe susceptibility to stress, mimicking the susceptible mouse sub-population. Furthermore, we describe an underlying mechanism by which glucocorticoids, acting via mineralocorticoid receptors (MRs), decrease resilience to stress via downregulation of mGlu2 receptors. We also provide a mechanistic link between MRs and an epigenetic control of the glutamatergic synapse that underlies susceptibility to stressful experiences. The approach and the epigenetic allostasis concept introduced here serve as a model for identifying individual differences based upon biomarkers and underlying mechanisms and also provide molecular features that may be useful in translation to human behavior and psychopathology.


Asunto(s)
Susceptibilidad a Enfermedades , Glucocorticoides/farmacología , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Individualidad , Animales , Modelos Animales de Enfermedad , Preferencias Alimentarias/efectos de los fármacos , Pérdida de Tono Postural/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mifepristona , Receptores de Glutamato Metabotrópico/deficiencia , Receptores de Glutamato Metabotrópico/genética , Receptores de Mineralocorticoides/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/genética , Sacarosa/administración & dosificación , Edulcorantes/administración & dosificación
3.
Transl Psychiatry ; 4: e354, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24473445

RESUMEN

The prevalence of autism spectrum disorders (ASDs) has increased 20-fold over the past 50 years to >1% of US children. Although twin studies attest to a high degree of heritability, the genetic risk factors are still poorly understood. We analyzed data from two independent populations using u-statistics for genetically structured wide-locus data and added data from unrelated controls to explore epistasis. To account for systematic, but disease-unrelated differences in (non-randomized) genome-wide association studies (GWAS), a correlation between P-values and minor allele frequency with low granularity data and for conducting multiple tests in overlapping genetic regions, we present a novel study-specific criterion for 'genome-wide significance'. From recent results in a comorbid disease, childhood absence epilepsy, we had hypothesized that axonal guidance and calcium signaling are involved in autism as well. Enrichment of the results in both studies with related genes confirms this hypothesis. Additional ASD-specific variations identified in this study suggest protracted growth factor signaling as causing more severe forms of ASD. Another cluster of related genes suggests chloride and potassium ion channels as additional ASD-specific drug targets. The involvement of growth factors suggests the time of accelerated neuronal growth and pruning at 9-24 months of age as the period during which treatment with ion channel modulators would be most effective in preventing progression to more severe forms of autism. By extension, the same computational biostatistics approach could yield profound insights into the etiology of many common diseases from the genetic data collected over the last decade.


Asunto(s)
Bioestadística/métodos , Trastornos Generalizados del Desarrollo Infantil/genética , Estudio de Asociación del Genoma Completo/métodos , Receptores de Factores de Crecimiento/genética , Índice de Severidad de la Enfermedad , Transducción de Señal/genética , Canales de Calcio/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Masculino , Ácido Mefenámico , Moduladores del Transporte de Membrana , Canales de Potasio/genética
4.
Brain Res ; 1325: 112-20, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20153734

RESUMEN

We used Flinder Sensitive Line (FSL) rats, a genetic model of unipolar depression, to examine whether changes in central GABAergic transmission are associated with a depressed phenotype. FSL rats showed an increased behavioral response to low doses of diazepam, as compared to either Sprague Dawley (SD) or Flinder Resistant Line (FRL) rats used as controls. Diazepam at a dose of 0.3 mg/kg, i.p., induced a robust impairment of motor coordination in FSL rats, but was virtually inactive in SD or FRL rats. The increased responsiveness of FSL rats was not due to changes in the brain levels of diazepam or its active metabolites, or to increases in the number or affinity of benzodiazepine recognition sites, as shown by the analysis of [(3)H]-flunitrazepam binding in the hippocampus, cerebral cortex or cerebellum. We therefore examined whether FSL rats differed from control rats for the expression levels of the K(+)/Cl(-) cotransporter, KCC2, which transports Cl(-) ions out of neurons, thus creating the concentration gradient that allows Cl(-) influx through the anion channel associated with GABA(A) receptors. Combined immunoblot and immunohistochemical data showed a widespread increase in KCC2 expression in FSL rats, as compared with control rats. The increase was more prominent in the cerebellum, where KCC2 was largely expressed in the granular layer. These data raise the interesting possibility that a spontaneous depressive state in animals is associated with an amplified GABAergic transmission in the CNS resulting from an enhanced expression of KCC2.


Asunto(s)
Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Trastorno Depresivo/metabolismo , Hipocampo/metabolismo , Simportadores/metabolismo , Animales , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/farmacocinética , Fármacos del Sistema Nervioso Central/farmacología , Cerebelo/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Diazepam/administración & dosificación , Diazepam/farmacocinética , Diazepam/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Masculino , Destreza Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Especificidad de la Especie , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA