Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nat Commun ; 15(1): 5359, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918402

RESUMEN

SDS22 forms an inactive complex with nascent protein phosphatase PP1 and Inhibitor-3. SDS22:PP1:Inhibitor-3 is a substrate for the ATPase p97/VCP, which liberates PP1 for binding to canonical regulatory subunits. The exact role of SDS22 in PP1-holoenzyme assembly remains elusive. Here, we show that SDS22 stabilizes nascent PP1. In the absence of SDS22, PP1 is gradually lost, resulting in substrate hyperphosphorylation and a proliferation arrest. Similarly, we identify a female individual with a severe neurodevelopmental disorder bearing an unstable SDS22 mutant, associated with decreased PP1 levels. We furthermore find that SDS22 directly binds to Inhibitor-3 and that this is essential for the stable assembly of SDS22:PP1: Inhibitor-3, the recruitment of p97/VCP, and the extraction of SDS22 during holoenzyme assembly. SDS22 with a disabled Inhibitor-3 binding site co-transfers with PP1 to canonical regulatory subunits, thereby forming non-functional holoenzymes. Our data show that SDS22, through simultaneous interaction with PP1 and Inhibitor-3, integrates the major steps of PP1 holoenzyme assembly.


Asunto(s)
Proteína Fosfatasa 1 , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Humanos , Holoenzimas/metabolismo , Femenino , Fosforilación , Unión Proteica , Células HEK293 , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética
2.
Pediatr Neurol ; 157: 5-13, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38833907

RESUMEN

BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of inherited neuromuscular junction (NMJ) disorders arising from gene variants encoding diverse NMJ proteins. Recently, the VAMP1 gene, responsible for encoding the vesicle-associated membrane protein 1 (VAMP1), has been associated with CMS. METHODS: This study presents a characterization of five new individuals with VAMP1-related CMS, providing insights into the phenotype. RESULTS: The individuals with VAMP1-related CMS exhibited early disease onset, presenting symptoms prenatally or during the neonatal period, alongside severe respiratory involvement and feeding difficulties. Generalized weakness at birth was a common feature, and none of the individuals achieved independent walking ability. Notably, all cases exhibited scoliosis. The clinical course remained stable, without typical exacerbations seen in other CMS types. The response to anticholinesterase inhibitors and salbutamol was only partial, but the addition of 3,4-diaminopyridine (3,4-DAP) led to significant and substantial improvements, suggesting therapeutic benefits of 3,4-DAP for managing VAMP1-related CMS symptoms. Noteworthy is the identification of the VAMP1 (NM_014231.5): c.340delA; p.Ile114SerfsTer72 as a founder variant in the Iberian Peninsula and Latin America. CONCLUSIONS: This study contributes valuable insights into VAMP1-related CMS, emphasizing their early onset, arthrogryposis, facial and generalized weakness, respiratory involvement, and feeding difficulties. Furthermore, the potential efficacy of 3,4-DAP as a useful therapeutic option warrants further exploration. The findings have implications for clinical management and genetic counseling in affected individuals. Additional research is necessary to elucidate the long-term outcomes of VAMP1-related CMS.

3.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892025

RESUMEN

Pathogenic variants in LMNA have been associated with a wide spectrum of muscular conditions: the laminopathies. LMNA-related congenital muscular dystrophy is a laminopathy characterised by the early onset of symptoms and often leads to a fatal outcome at young ages. Children face a heightened risk of malignant arrhythmias. No established paediatric protocols for managing this condition are available. We review published cases and provide insights into disease progression in two twin sisters with LMNA-related muscular dystrophy. Our objective is to propose a cardiac surveillance and management plan tailored specifically for paediatric patients. We present a family of five members, including two twin sisters with LMNA-related muscular dystrophy. A comprehensive neuromuscular and cardiac work-up was performed in all family members. Genetic analysis using massive sequencing technology was performed in both twins. Clinical assessment showed that only the twins showed diagnoses of LMNA-related muscular dystrophy. Follow-up showed an early onset of symptoms and life-threatening arrhythmias, with differing disease progressions despite both twins passing away. Genetic analysis identified a de novo rare missense deleterious variant in the LMNA gene. Other additional rare variants were identified in genes associated with myasthenic syndrome. Early-onset neuromuscular symptoms could be related to a prognosis of worse life-threatening arrhythmias in LMNA related muscular dystrophy. Being a carrier of other rare variants may be a modifying factor in the progression of the phenotype, although further studies are needed. There is a pressing need for specific cardiac recommendations tailored to the paediatric population to mitigate the risk of malignant arrhythmias.


Asunto(s)
Lamina Tipo A , Distrofias Musculares , Gemelos Monocigóticos , Humanos , Lamina Tipo A/genética , Gemelos Monocigóticos/genética , Femenino , Distrofias Musculares/genética , Distrofias Musculares/terapia , Masculino , Niño , Linaje , Preescolar , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiología
4.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38903061

RESUMEN

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern. The mechanism linking pathogenic variants in HMGCR with skeletal muscle dysfunction is unclear. We knocked down Hmgcr in mouse skeletal myoblasts, knocked down hmgcr in Drosophila, and expressed three pathogenic HMGCR variants (c.1327C>T, p.Arg443Trp; c.1522_1524delTCT, p.Ser508del; and c.1621G>A, p.Ala541Thr) in Hmgcr knockdown mouse myoblasts. Hmgcr deficiency was associated with decreased proliferation, increased apoptosis, and impaired myotube fusion. Transcriptome sequencing of Hmgcr knockdown versus control myoblasts revealed differential expression involving mitochondrial function, with corresponding differences in cellular oxygen consumption rates. Both ubiquitous and muscle-specific knockdown of hmgcr in Drosophila led to lethality. Overexpression of reference HMGCR cDNA rescued myotube fusion in knockdown cells, whereas overexpression of the pathogenic variants of HMGCR cDNA did not. These results suggest that the three HMGCR-related muscle diseases share disease mechanisms related to skeletal muscle development.

5.
Ann Clin Transl Neurol ; 11(6): 1456-1464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693632

RESUMEN

OBJECTIVE: Duchenne and Becker muscular dystrophies (DMD and BMD) are dystrophinopathies caused by variants in DMD gene, resulting in reduced or absent dystrophin. These conditions, characterized by muscle weakness, also manifest central nervous system (CNS) comorbidities due to dystrophin expression in the CNS. Prior studies have indicated a higher prevalence of epilepsy in individuals with dystrophinopathy compared to the general population. Our research aimed to investigate epilepsy prevalence in dystrophinopathies and characterize associated electroencephalograms (EEGs) and seizures. METHODS: We reviewed 416 individuals with dystrophinopathy, followed up at three centers between 2010 and 2023, to investigate the lifetime epilepsy prevalence and characterize EEGs and seizures in those individuals diagnosed with epilepsy. Associations between epilepsy and type of dystrophinopathy, genotype, and cognitive involvement were studied. RESULTS: Our study revealed a higher epilepsy prevalence than the general population (1.4%; 95% confidence interval: 0.7-3.2%), but notably lower than previously reported in smaller dystrophinopathy cohorts. No significant differences were found in epilepsy prevalence between DMD and BMD or based on underlying genotypes. Cognitive impairment was not found to be linked to higher epilepsy rates. The most prevalent epilepsy types in dystrophinopathies resembled those observed in the broader pediatric population, with most individuals effectively controlled through monotherapy. INTERPRETATION: The actual epilepsy prevalence in dystrophinopathies may be markedly lower than previously estimated, possibly half or even less. Our study provides valuable insights into the epilepsy landscape in individuals with dystrophinopathy, impacting medical care, especially for those with concurrent epilepsy.


Asunto(s)
Epilepsia , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/epidemiología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Masculino , Epilepsia/epidemiología , Epilepsia/etiología , Adolescente , Femenino , Adulto , Adulto Joven , Niño , Prevalencia , Persona de Mediana Edad , Preescolar , Electroencefalografía , Comorbilidad , Distrofina/genética
6.
medRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585825

RESUMEN

Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.

7.
J Neuromuscul Dis ; 11(3): 647-653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489196

RESUMEN

Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.


Asunto(s)
Mosaicismo , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Estudios de Asociación Genética , Miotonía Congénita/genética , Miotonía Congénita/diagnóstico , Canal Liberador de Calcio Receptor de Rianodina/genética , Masculino , Preescolar
8.
Neurol Genet ; 10(2): e200138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38544965

RESUMEN

Objectives: Thymidine kinase 2 deficiency (TK2d) is a rare autosomal recessive disorder that stems from a perturbation of the mitochondrial DNA maintenance. Nucleoside treatment has recently shown promise as a disease-modifying therapy. TK2d was initially associated with rapidly progressive fatal myopathy in children featuring mitochondrial DNA depletion. Subsequently, less severe variants of the disease were described, with onset of symptoms during adolescence or adulthood and associated with the presence of multiple mtDNA deletions. These less severe phenotypes have been reported in only 15% of the approximately 120 patients described worldwide. However, some reports suggest that these juvenile and adult-onset presentations may be more common. The objective of this study was to describe the clinical phenotype in a sample of patients from Spain. Methods: This study includes 53 patients harboring biallelic TK2 pathogenic variants, compiling data retrospectively from 7 Spanish centers. We analyzed allele frequency, investigated the most recent common ancestor of core haplotypes, and used the Runs of Homozygosity approach to investigate variant coalescence. Results: Symptom onset distribution revealed that 32 patients (60%) experienced symptoms beyond 12 years of age. Approximately 30% of patients died of respiratory insufficiency, while 56% of surviving patients needed mechanical ventilation. Genetic analysis identified 16 distinct variants in TK2. Two variants, p.Lys202del and p.Thr108Met, exhibited significantly higher prevalence in the Spanish population than that reported in gnomAD database (86-fold and 13-fold, respectively). These variants are estimated to have originated approximately 16.8 generations ago for p.Thr108Met and 95.2 generations ago for p.Lys202del within the Spanish population, with the increase in frequency attributed to various forms of inbreeding. In late-onset cases, 46.9% carried the p.Lys202del variant. Discussion: The higher frequency of TK2d in Spain can be partially attributed to the increased prevalence of 2 variants and consanguinity. Notably, in 60% of the cohort, the disease was late-onset, emphasizing the potential underdiagnosis of this subgroup of patients in other regions. Raising awareness of this potentially treatable disorder is of utmost importance because early interventions can significantly affect the quality of life and survival of affected individuals.

9.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316953

RESUMEN

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Asunto(s)
Ataxia , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona , Ubiquinona/deficiencia , Adulto , Humanos , Ubiquinona/genética , Ubiquinona/uso terapéutico , Ubiquinona/metabolismo , Estudios de Seguimiento , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Mutación , Proteínas del Complejo SMN/genética
10.
Neuromuscul Disord ; 34: 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38087756

RESUMEN

Pompe disease is a rare genetic disorder with an estimated prevalence of 1:60.000. The two main phenotypes are Infantile Onset Pompe Disease (IOPD) and Late Onset Pompe Disease (LOPD). There is no published data from Spain regarding the existing number of cases, regional distribution, clinical features or, access and response to the treatment. We created a registry to collect all these data from patients with Pompe in Spain. Here, we report the data of the 122 patients registered including nine IOPD and 113 LOPD patients. There was a high variability in how the diagnosis was obtained and how the follow-up was performed among different centres. Seven IOPD patients were still alive being all treated with enzymatic replacement therapy (ERT) at last visit. Ninety four of the 113 LOPD patients had muscle weakness of which 81 were receiving ERT. We observed a progressive decline in the results of muscle function tests during follow-up. Overall, the Spanish Pompe Registry is a valuable resource for understanding the demographics, patient's journey and clinical characteristics of patients in Spain. Our data supports the development of agreed guidelines to ensure that the care provided to the patients is standardized across the country.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/epidemiología , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , alfa-Glucosidasas/genética , Fenotipo , Sistema de Registros , Terapia de Reemplazo Enzimático/métodos
11.
Medicina (B.Aires) ; 83(supl.4): 13-17, oct. 2023. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1521196

RESUMEN

Resumen La terapia génica ha logrado avances significativos en el tratamiento de enfermedades genéticas, especial mente en enfermedades raras y monogénicas. Se han desarrollado y aprobado terapias génicas para tratar en fermedades como la atrofia muscular espinal, brindando esperanza a los pacientes y demostrando la eficacia de esta terapia. Actualmente, se están realizando numerosos ensayos clínicos para evaluar la seguridad y eficacia de la terapia génica en diversas enfermedades, particularmente en el campo de la neurología pediátrica. Estos estudios están generando datos alentadores y contribuyen al conoci miento sobre cómo mejorar las técnicas de terapia génica. A pesar de los avances, la terapia génica enfrenta desafíos importantes. Es una terapia costosa y téc nicamente compleja, lo que limita su accesibilidad. Además, aspectos como la entrega eficiente de genes, la respuesta inmunológica a los vectores y la duración de la respuesta terapéutica requieren mejoras. se está investigando activamente. En cuanto al futuro de la terapia génica, se espera que los avances en tecnología de edición génica, como CRISPR-Cas9, permitan una mayor precisión y eficiencia en la modificación de genes. Se espera que la investigación en vectores de terapia génica mejore la capacidad de entrega y la seguridad de los tratamientos. Se están desarrollando nuevas ge neraciones de vectores virales y no virales que podrían superar las limitaciones actuales y permitir una admi nistración más eficiente y precisa de genes terapéuticos.


Abstract Gene therapy has achieved significant advancements in the treatment of genetic diseases, especially in rare and monogenic diseases. Gene therapies have been de veloped and approved to treat diseases such as spinal muscular atrophy, offering hope to patients and dem onstrating the effectiveness of this therapy. Currently, numerous clinical trials are being conduct ed to evaluate the safety and efficacy of gene therapy in various diseases, particularly in the field of pediatric neurology. These studies are generating encouraging data and contributing to the knowledge on how to im prove gene therapy techniques. Despite the advancements, gene therapy faces significant challenges. It is a costly and technically complex therapy, limiting its accessibility. Addition ally, aspects such as efficient gene delivery, immune response to vectors, and duration of therapeutic re sponse require improvements and are actively being investigated. Regarding the future of gene therapy, advances in gene editing technology, such as CRISPR-Cas9, are ex pected to allow for greater precision and efficiency in gene modification. Research on gene therapy vectors is expected to en hance the delivery capacity and safety of treatments. New generations of viral and non-viral vectors are be ing developed that could overcome current limitations and enable more efficient and precise administration of therapeutic genes.

12.
Medicina (B Aires) ; 83 Suppl 4: 13-17, 2023 Sep.
Artículo en Español | MEDLINE | ID: mdl-37714117

RESUMEN

Gene therapy has achieved significant advancements in the treatment of genetic diseases, especially in rare and monogenic diseases. Gene therapies have been developed and approved to treat diseases such as spinal muscular atrophy, offering hope to patients and demonstrating the effectiveness of this therapy. Currently, numerous clinical trials are being conducted to evaluate the safety and efficacy of gene therapy in various diseases, particularly in the field of pediatric neurology. These studies are generating encouraging data and contributing to the knowledge on how to improve gene therapy techniques. Despite the advancements, gene therapy faces significant challenges. It is a costly and technically complex therapy, limiting its accessibility. Additionally, aspects such as efficient gene delivery, immune response to vectors, and duration of therapeutic response require improvements and are actively being investigated. Regarding the future of gene therapy, advances in gene editing technology, such as CRISPR-Cas9, are expected to allow for greater precision and efficiency in gene modification. Research on gene therapy vectors is expected to enhance the delivery capacity and safety of treatments. New generations of viral and non-viral vectors are being developed that could overcome current limitations and enable more efficient and precise administration of therapeutic genes.


La terapia génica ha logrado avances significativos en el tratamiento de enfermedades genéticas, especialmente en enfermedades raras y monogénicas. Se han desarrollado y aprobado terapias génicas para tratar enfermedades como la atrofia muscular espinal, brindando esperanza a los pacientes y demostrando la eficacia de esta terapia. Actualmente, se están realizando numerosos ensayos clínicos para evaluar la seguridad y eficacia de la terapia génica en diversas enfermedades, particularmente en el campo de la neurología pediátrica. Estos estudios están generando datos alentadores y contribuyen al conocimiento sobre cómo mejorar las técnicas de terapia génica. A pesar de los avances, la terapia génica enfrenta desafíos importantes. Es una terapia costosa y técnicamente compleja, lo que limita su accesibilidad. Además, aspectos como la entrega eficiente de genes, la respuesta inmunológica a los vectores y la duración de la respuesta terapéutica requieren mejoras. se está investigando activamente. En cuanto al futuro de la terapia génica, se espera que los avances en tecnología de edición génica, como CRISPR-Cas9, permitan una mayor precisión y eficiencia en la modificación de genes. Se espera que la investigación en vectores de terapia génica mejore la capacidad de entrega y la seguridad de los tratamientos. Se están desarrollando nuevas generaciones de vectores virales y no virales que podrían superar las limitaciones actuales y permitir una administración más eficiente y precisa de genes terapéuticos.


Asunto(s)
Atrofia Muscular Espinal , Neurología , Niño , Humanos , Terapia Genética , Edición Génica , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Tecnología
13.
Cell Death Dis ; 14(9): 596, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37673877

RESUMEN

Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. The cellular and molecular consequences of the lack of dystrophin in humans are only partially known, which is crucial for the development of new therapies aiming to slow or stop the progression of the disease. Here we have analyzed quadriceps muscle biopsies of seven DMD patients aged 2 to 4 years old and five age and gender matched controls using single nuclei RNA sequencing (snRNAseq) and correlated the results obtained with clinical data. SnRNAseq identified significant differences in the proportion of cell population present in the muscle samples, including an increase in the number of regenerative fibers, satellite cells, and fibro-adipogenic progenitor cells (FAPs) and a decrease in the number of slow fibers and smooth muscle cells. Muscle samples from the younger patients with stable mild weakness were characterized by an increase in regenerative fibers, while older patients with moderate and progressive weakness were characterized by loss of muscle fibers and an increase in FAPs. An analysis of the gene expression profile in muscle fibers identified a strong regenerative signature in DMD samples characterized by the upregulation of genes involved in myogenesis and muscle hypertrophy. In the case of FAPs, we observed upregulation of genes involved in the extracellular matrix regeneration but also several signaling pathways. Indeed, further analysis of the potential intercellular communication profile showed a dysregulation of the communication profile in DMD samples identifying FAPs as a key regulator of cell signaling in DMD muscle samples. In conclusion, our study has identified significant differences at the cellular and molecular levels in the different cell populations present in skeletal muscle samples of patients with DMD compared to controls.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Preescolar , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Transcriptoma/genética , Fibras Musculares Esqueléticas , Transducción de Señal
14.
J Med Genet ; 60(10): 965-973, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37197784

RESUMEN

BACKGROUND: Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders. TRAPPC11-related LGMD is an autosomal-recessive condition characterised by muscle weakness and intellectual disability. METHODS: A clinical and histopathological characterisation of 25 Roma individuals with LGMD R18 caused by the homozygous TRAPPC11 c.1287+5G>A variant is reported. Functional effects of the variant on mitochondrial function were investigated. RESULTS: The c.1287+5G>A variant leads to a phenotype characterised by early onset muscle weakness, movement disorder, intellectual disability and elevated serum creatine kinase, which is similar to other series. As novel clinical findings, we found that microcephaly is almost universal and that infections in the first years of life seem to act as triggers for a psychomotor regression and onset of seizures in several individuals with TRAPPC11 variants, who showed pseudometabolic crises triggered by infections. Our functional studies expanded the role of TRAPPC11 deficiency in mitochondrial function, as a decreased mitochondrial ATP production capacity and alterations in the mitochondrial network architecture were detected. CONCLUSION: We provide a comprehensive phenotypic characterisation of the pathogenic variant TRAPPC11 c.1287+5G>A, which is founder in the Roma population. Our observations indicate that some typical features of golgipathies, such as microcephaly and clinical decompensation associated with infections, are prevalent in individuals with LGMD R18.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Distrofia Muscular de Cinturas , Distrofias Musculares , Romaní , Humanos , Romaní/genética , Fenotipo , Distrofia Muscular de Cinturas/genética , Debilidad Muscular , Proteínas de Transporte Vesicular
15.
Front Genet ; 14: 1135438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035729

RESUMEN

Background: Laminopathies are caused by rare alterations in LMNA, leading to a wide clinical spectrum. Though muscular dystrophy begins at early ages, disease progression is different in each patient. We investigated variability in laminopathy phenotypes by performing a targeted genetic analysis of patients diagnosed with LMNA-related muscular dystrophy to identify rare variants in alternative genes, thereby explaining phenotypic differences. Methods: We analyzed 105 genes associated with muscular diseases by targeted sequencing in 26 pediatric patients of different countries, diagnosed with any LMNA-related muscular dystrophy. Family members were also clinically assessed and genetically analyzed. Results: All patients carried a pathogenic rare variant in LMNA. Clinical diagnoses included Emery-Dreifuss muscular dystrophy (EDMD, 13 patients), LMNA-related congenital muscular dystrophy (L-CMD, 11 patients), and limb-girdle muscular dystrophy 1B (LGMD1B, 2 patients). In 9 patients, 10 additional rare genetic variants were identified in 8 genes other than LMNA. Genotype-phenotype correlation showed additional deleterious rare variants in five of the nine patients (3 L-CMD and 2 EDMD) with severe phenotypes. Conclusion: Analysis f known genes related to muscular diseases in close correlation with personalized clinical assessments may help identify additional rare variants of LMNA potentially associated with early onset or most severe disease progression.

16.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047330

RESUMEN

Several clinical trials are working on drug development for Duchenne and Becker muscular dystrophy (DMD and BMD) treatment, and, since the expected increase in dystrophin is relatively subtle, high-sensitivity quantification methods are necessary. There is also a need to quantify dystrophin to reach a definitive diagnosis in individuals with mild BMD, and in female carriers. We developed a method for the quantification of dystrophin in DMD and BMD patients using spectral confocal microscopy. It offers the possibility to capture the whole emission spectrum for any antibody, ensuring the selection of the emission peak and allowing the detection of fluorescent emissions of very low intensities. Fluorescence was evaluated first on manually selected regions of interest (ROIs), proving the usefulness of the methodology. Later, ROI selection was automated to make it operator-independent. The proposed methodology correctly classified patients according to their diagnosis, detected even minimal traces of dystrophin, and the results obtained automatically were statistically comparable to the manual ones. Thus, spectral imaging could be implemented to measure dystrophin expression and it could pave the way for detailed analysis of how its expression relates to the clinical course. Studies could be further expanded to better understand the expression of dystrophin-associated protein complexes (DAPCs).


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Humanos , Femenino , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/metabolismo
17.
J Neuromuscul Dis ; 10(4): 653-665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038823

RESUMEN

BACKGROUND: Three therapeutic strategies have radically changed the therapeutic scenario for spinal muscular atrophy (SMA). However, therapeutic response differs between individuals. There is a need to identify biomarkers to further assess therapeutic response and to better understand which variables determine the extent of response. METHODS: We conducted a study using an optimized digital droplet PCR-based method for the ultra-sensitive detection of SMN transcript in serum EVs from SMA 2 individuals treated with nusinersen over 14 months. In parallel, we investigated levels of serum and CSF neurofilament heavy chain (pNF-H) in the same cohort. RESULTS: Expression of flSMN transcript in EVs of SMA 2 individuals prior to nusinersen was lower than in controls (0.40 vs 2.79 copies/ul; p < 0.05) and increased after 14 months of nusinersen (0.40 vs 1.11 copies/ul; p < 0.05). The increase in flSMN with nusinersen was significantly higher in younger individuals (p < 0.05). Serum pNF-h was higher in non-treated individuals with SMA 2 than in controls (230.72 vs 22.88 pg/ml; p < 0.05) and decreased with nusinersen (45.72 pg/ml at 6 months, 39.02 pg/ml at 14 months). CSF pNF-h in SMA 2 individuals also decreased with nusinersen (248.04 pg/ml prior to treatment, 197.10 pg/dl at 2 months, 104.43 pg/dl at 6 months, 131.03 pg/dl at 14 months). CONCLUSIONS: We identified an increase of flSMN transcript in serum EVs of SMA 2 individuals treated with nusinersen that was more pronounced in the younger individuals. Our results indicate that flSMN transcript expression in serum EVs is a possible biomarker in SMA to predict or monitor the response to treatment.


Asunto(s)
Vesículas Extracelulares , Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Humanos , Biomarcadores , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico
19.
Front Cell Dev Biol ; 11: 1142937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968203

RESUMEN

Introduction: LMNA-related muscular dystrophy is a rare entity that produce "laminopathies" such as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.

20.
J Neurol ; 270(5): 2531-2546, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36735057

RESUMEN

Risdiplam is an oral, survival of motor neuron 2 (SMN2) pre-mRNA splicing modifier approved for the treatment of spinal muscular atrophy (SMA). SUNFISH (NCT02908685) Part 2, a Phase 3, randomized, double-blind, placebo-controlled study, investigated the efficacy and safety of risdiplam in type 2 and non­ambulant type 3 SMA. The primary endpoint was met: a significantly greater change from baseline in 32-item Motor Function Measure (MFM32) total score was observed with risdiplam compared with placebo at month 12. After 12 months, all participants received risdiplam while preserving initial treatment blinding. We report 24-month efficacy and safety results in this population. Month 24 exploratory endpoints included change from baseline in MFM32 and safety. MFM­derived results were compared with an external comparator. At month 24 of risdiplam treatment, 32% of patients demonstrated improvement (a change of ≥ 3) from baseline in MFM32 total score; 58% showed stabilization (a change of ≥ 0). Compared with an external comparator, a treatment difference of 3.12 (95% confidence interval [CI] 1.67-4.57) in favor of risdiplam was observed in MFM-derived scores. Overall, gains in motor function at month 12 were maintained or improved upon at month 24. In patients initially receiving placebo, MFM32 remained stable compared with baseline (0.31 [95% CI - 0.65 to 1.28]) after 12 months of risdiplam; 16% of patients improved their score and 59% exhibited stabilization. The safety profile after 24 months was consistent with that observed after 12 months. Risdiplam over 24 months resulted in further improvement or stabilization in motor function, confirming the benefit of longer-term treatment.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Humanos , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Pirimidinas/efectos adversos , Compuestos Azo/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA