Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-21209385

RESUMEN

The segregation of sister DNA molecules at mitosis involves their traction to opposite poles by microtubules attached to kinetochores. By creating tension required to stabilize kinetochore microtubules, sister chromatid cohesion has a key role in ensuring that sister kinetochores attach to microtubules with opposing polarity, a process known as biorientation. Cohesion is mediated by a cohesin complex whose Smc1, Smc3, and kleisin subunits form a tripartite ring thought to hold sister DNAs together by entrapping them (the ring model). Sister chromatid disjunction at the onset of anaphase is triggered by a thiol protease called separase whose activation, only when all chromosomes have bioriented, opens the cohesin ring by cleaving its kleisin subunit. Separase is inhibited by the binding of an inhibitory chaperone called securin whose destruction at the hands of a ubiquitin protein ligase called the anaphase-promoting complex/cyclosome (APC/C) is essential for kleisin cleavage and sister chromatid disjunction. We describe microinjection experiments showing that cohesin cleavage and Cdk1 down-regulation are sufficient to drive formation of daughter nuclei in cells arrested in metaphase due to inactivation of the APC/C and describe chemical cross-linking experiments consistent with the ring model. How sister DNAs enter the cohesin ring and are retained inside for long periods of time after the completion of DNA replication remains poorly understood.


Asunto(s)
Núcleo Celular/genética , Modelos Biológicos , Anafase , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Endopeptidasas/metabolismo , Ratones , Fase S , Separasa , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Cohesinas
2.
Nucleic Acids Res ; 32(Database issue): D560-7, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14681481

RESUMEN

GermOnline provides information and microarray expression data for genes involved in mitosis and meiosis, gamete formation and germ line development across species. The database has been developed, and is being curated and updated, by life scientists in cooperation with bioinformaticists. Information is contributed through an online form using free text, images and the controlled vocabulary developed by the GeneOntology Consortium. Authors provide up to three references in support of their contribution. The database is governed by an international board of scientists to ensure a standardized data format and the highest quality of GermOnline's information content. Release 2.0 provides exclusive access to microarray expression data from Saccharomyces cerevisiae and Rattus norvegicus, as well as curated information on approximately 700 genes from various organisms. The locus report pages include links to external databases that contain relevant annotation, microarray expression and proteome data. Conversely, the Saccharomyces Genome Database (SGD), S.cerevisiae GeneDB and Swiss-Prot link to the budding yeast section of GermOnline from their respective locus pages. GermOnline, a fully operational prototype subject-oriented knowledgebase designed for community annotation and array data visualization, is accessible at http://www.germonline.org. The target audience includes researchers who work on mitotic cell division, meiosis, gametogenesis, germ line development, human reproductive health and comparative genomics.


Asunto(s)
Diferenciación Celular/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Animales , Biología Computacional , Genómica , Humanos , Almacenamiento y Recuperación de la Información , Internet , Meiosis/genética , Mitosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/metabolismo , Proteoma , Proteómica , Ratas
4.
Curr Biol ; 11(23): 1825-35, 2001 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-11728305

RESUMEN

BACKGROUND: Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS: Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS: Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.


Asunto(s)
Caenorhabditis elegans/citología , Proteínas de Ciclo Celular/metabolismo , Cromosomas , Endopeptidasas , Meiosis , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Clonación Molecular , Cartilla de ADN , Hibridación Fluorescente in Situ , Mutación , Proteínas de Saccharomyces cerevisiae , Separasa
5.
Annu Rev Genet ; 35: 673-745, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11700297

RESUMEN

The separation of sister chromatids at the metaphase to anaphase transition is one of the most dramatic of all cellular events and is a crucial aspect of all sexual and asexual reproduction. The molecular basis for this process has until recently remained obscure. New research has identified proteins that hold sisters together while they are aligned on the metaphase plate. It has also shed insight into the mechanisms that dissolve sister chromatid cohesion during both mitosis and meiosis. These findings promise to provide insights into defects in chromosome segregation that occur in cancer cells and into the pathological pathways by which aneuploidy arises during meiosis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Meiosis/fisiología , Mitosis/fisiología , Intercambio de Cromátides Hermanas/fisiología , Animales , Segregación Cromosómica , Replicación del ADN/fisiología , Genoma , Humanos , Proteínas Nucleares/fisiología
6.
EMBO J ; 20(22): 6359-70, 2001 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11707407

RESUMEN

Yeast spindle pole bodies (SPBs) duplicate once per cell cycle by a conservative mechanism resulting in a pre-existing 'old' and a newly formed SPB. The two SPBs of yeast cells are functionally distinct. It is only the SPB that migrates into the daughter cell, the bud, which carries the Bfa1p-Bub2p GTPase-activating protein (GAP) complex, a component of the spindle positioning checkpoint. We investigated whether the functional difference of the two SPBs correlates with the time of their assembly. We describe that in unperturbed cells the 'old' SPB always migrates into the bud. However, Bfa1p localization is not determined by SPB inheritance. It is the differential interaction of cytoplasmic microtubules with the mother and bud cortex that directs the Bfa1p-Bub2p GAP to the bud-ward-localized SPB. In response to defects of cytoplasmic microtubules to interact with the cell cortex, the Bfa1p-Bub2p complex binds to both SPBs. This may provide a mechanism to delay cell cycle progression when cytoplasmic microtubules fail to orient the spindle. Thus, SPBs are able to sense cytoplasmic microtubule properties and regulate the Bfa1p-Bub2p GAP accordingly.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Antineoplásicos/farmacología , División Celular , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Activadoras de GTPasa/metabolismo , Genotipo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/metabolismo , Modelos Biológicos , Nocodazol/farmacología , Fosfoproteínas/metabolismo , Plásmidos/metabolismo , Unión Proteica , Saccharomycetales/fisiología , Factores de Tiempo , Proteína Fluorescente Roja
7.
Nature ; 413(6856): 565, 2001 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-11595914
8.
Novartis Found Symp ; 237: 113-33; discussion 133-8, 158-63, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11444040

RESUMEN

In eukaryotic cells, replicated DNA molecules remain physically connected from their synthesis in S phase until they are separated during anaphase. This phenomenon, called sister chromatid cohesion, is essential for the temporal separation of DNA replication and mitosis and for the equal separation of the duplicated genome. Recent work has identified a number of chromosomal proteins required for cohesion. In this review we discuss how these proteins may connect sister chromatids and how they are removed from chromosomes to allow sister chromatid separation at the onset of anaphase.


Asunto(s)
Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Cromátides/ultraestructura , Replicación del ADN/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Huso Acromático/metabolismo , Cohesinas
9.
Curr Biol ; 11(12): 991-5, 2001 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-11448778

RESUMEN

The repair of DNA double-strand breaks by recombination requires the presence of an undamaged copy that is used as a template during the repair process. Because cells acquire resistance to gamma irradiation during DNA replication and because sister chromatids are the preferred partner for double-strand break repair in mitotic diploid yeast cells, it has long been suspected that cohesion between sister chromatids might be crucial for efficient repair. This hypothesis is consistent with the sensitivity to gamma irradiation of mutants defective in the cohesin complex that holds sister chromatids together from DNA replication until the onset of anaphase (reviewed in) . It is also in accordance with the finding that surveillance mechanisms (checkpoints) that sense DNA damage arrest cell cycle progression in yeast by causing stabilization of the securin Pds1, thereby blocking sister chromatid separation. The hypersensitivity to irradiation of cohesin mutants could, however, be due to a more direct involvement of the cohesin complex in the process of DNA repair. We show here that passage through S phase in the presence of cohesin, and not cohesin per se, is essential for efficient double-strand break repair during G2 in yeast. Proteins needed to load cohesin onto chromosomes (Scc2) and to generate cohesion during S phase (Eco1) are also shown to be required for repair. Our results confirm what has long been suspected but never proven, that cohesion between sister chromatids is essential for efficient double-strand break repair in mitotic cells.


Asunto(s)
Acetiltransferasas , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Reparación del ADN/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , Daño del ADN , Electroforesis en Gel de Campo Pulsado , Proteínas Fúngicas/metabolismo , Rayos gamma , Proteínas Nucleares/genética , Fosfoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Temperatura , Cohesinas
10.
Curr Biol ; 11(13): 1001-9, 2001 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-11470404

RESUMEN

BACKGROUND: Meiosis is the process by which gametes are generated with half the ploidy of somatic cells. This reduction is achieved by three major differences in chromosome behavior during meiosis as compared to mitosis: the production of chiasmata by recombination, the protection of centromere-proximal sister chromatid cohesion, and the monoorientation of sister kinetochores during meiosis I. Mistakes in any of these processes lead to chromosome missegregation. RESULTS: To identify genes involved in meiotic chromosome behavior in Saccharomyces cerevisiae, we deleted 301 open reading frames (ORFs) which are preferentially expressed in meiotic cells according to microarray gene expression data. To facilitate the detection of chromosome missegregation mutants, chromosome V of the parental strain was marked by GFP. Thirty-three ORFs were required for the formation of wild-type asci, eight of which were needed for proper chromosome segregation. One of these (MAM1) is essential for the monoorientation of sister kinetochores during meiosis I. Two genes (MND1 and MND2) are implicated in the recombination process and another two (SMA1 and SMA2) in prospore membrane formation. CONCLUSIONS: Reverse genetics using gene expression data is an effective method for identifying new genes involved in specific cellular processes.


Asunto(s)
Genes Fúngicos , Meiosis/genética , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Segregación Cromosómica/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Sistemas de Lectura Abierta , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología
11.
Mol Cell ; 7(6): 1213-20, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11430824

RESUMEN

Activation of HO in yeast involves recruitment of transcription factors in two waves. The first is triggered by inactivation of Cdk1 at the end of mitosis, which promotes import into the nucleus of the Swi5 transcription factor. Swi5 recruits the Swi/Snf chromatin-remodeling complex, which then facilitates recruitment of the SAGA histone acetylase, which in turn permits the binding of the SBF transcription factor. We show here that SBF then recruits the SRB/mediator complex and that this process occurs in the absence of Cdk1 activity. The second wave is triggered by reactivation of Cdk1, which leads to recruitment of PolII, TFIIB, and TFIIH. RNA polymerase is, therefore, recruited to HO in two steps and not as a holoenzyme. A similar sequence of events occurs at other SBF-regulated promoters, such as CLN1, CLN2, and PCL1.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular , Quinasas Ciclina-Dependientes , Proteínas de Unión al ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Fúngicas/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Factores de Transcripción TFII , Factores de Transcripción/metabolismo , Proteína Quinasa CDC2/genética , Ciclo Celular/fisiología , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas Fúngicas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción TFIIB , Factor de Transcripción TFIIH , Factores de Transcripción/genética , Levaduras
12.
Cell ; 105(4): 459-72, 2001 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-11371343

RESUMEN

At the onset of anaphase, a caspase-related protease (separase) destroys the link between sister chromatids by cleaving the cohesin subunit Scc1. During most of the cell cycle, separase is kept inactive by binding to an inhibitory protein called securin. Separase activation requires proteolysis of securin, which is mediated by an ubiquitin protein ligase called the anaphase-promoting complex. Cells regulate anaphase entry by delaying securin ubiquitination until all chromosomes have attached to the mitotic spindle. Though no longer regulated by this mitotic surveillance mechanism, sister separation remains tightly cell cycle regulated in yeast mutants lacking securin. We show here that the Polo/Cdc5 kinase phosphorylates serine residues adjacent to Scc1 cleavage sites and strongly enhances their cleavage. Phosphorylation of separase recognition sites may be highly conserved and regulates sister chromatid separation independently of securin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Intercambio de Cromátides Hermanas/fisiología , Complejos de Ubiquitina-Proteína Ligasa , Secuencia de Aminoácidos , Anafase/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona , Secuencia Conservada , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligasas/genética , Ligasas/metabolismo , Metafase/fisiología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosfoproteínas , Fosforilación , Securina , Serina , Telómero/genética , Telómero/metabolismo , Ubiquitina-Proteína Ligasas , Levaduras/enzimología , Levaduras/genética , Cohesinas
13.
Nature ; 410(6831): 955-9, 2001 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-11309624

RESUMEN

Cohesion between sister chromatids is established during DNA replication and depends on a protein complex called cohesin. At the metaphase-anaphase transition in the yeast Saccharomyces cerevisiae, the ESP1-encoded protease separin cleaves SCC1, a subunit of cohesin with a relative molecular mass of 63,000 (Mr 63K). The resulting 33K carboxy-terminal fragment of SCC1 bears an amino-terminal arginine-a destabilizing residue in the N-end rule. Here we show that the SCC1 fragment is short-lived (t1/2 approximately 2 min), being degraded by the ubiquitin/proteasome-dependent N-end rule pathway. Overexpression of a long-lived derivative of the SCC1 fragment is lethal. In ubr1Delta cells, which lack the N-end rule pathway, we found a highly increased frequency of chromosome loss. The bulk of increased chromosome loss in ubr1Delta cells is caused by metabolic stabilization of the ESP1-produced SCC1 fragment. This fragment is the first physiological substrate of the N-end rule pathway that is targeted through its N-terminal residue. A number of yeast proteins bear putative cleavage sites for the ESP1 separin, suggesting other physiological substrates and functions of the N-end rule pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Cromosomas Fúngicos/fisiología , Endopeptidasas , Ligasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas , Anafase , Arginina , Proteínas de Ciclo Celular/química , División Celular , Cromátides/fisiología , Cisteína Endopeptidasas/metabolismo , Dipéptidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Semivida , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares , Fragmentos de Péptidos/metabolismo , Fosfoproteínas , Complejo de la Endopetidasa Proteasomal , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Separasa , Ubiquitinas/metabolismo
14.
Cell ; 103(3): 375-86, 2000 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-11081625

RESUMEN

In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This "sister chromatid cohesion" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on the multisubunit cohesin complex, which possibly forms the physical bridges connecting sisters. Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro. Cleavage of Sccl in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Procesamiento Proteico-Postraduccional , Levaduras/citología , Levaduras/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Anafase/efectos de los fármacos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Línea Celular , Proteínas Cromosómicas no Histona , Segregación Cromosómica/efectos de los fármacos , Cromosomas Fúngicos/efectos de los fármacos , Cromosomas Fúngicos/metabolismo , Secuencia Conservada/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/clasificación , Cisteína Endopeptidasas/aislamiento & purificación , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Endopeptidasas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Mitosis/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas Nucleares , Fosfoproteínas , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae , Separasa , Alineación de Secuencia , Spodoptera , Levaduras/efectos de los fármacos , Levaduras/enzimología
15.
Cell ; 103(3): 387-98, 2000 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-11081626

RESUMEN

It has been proposed but never proven that cohesion between sister chromatids distal to chiasmata is responsible for holding homologous chromosomes together while spindles attempt to pull them toward opposite poles during metaphase of meiosis I. Meanwhile, the mechanism by which disjunction of homologs is triggered at the onset of anaphase I has remained a complete mystery. In yeast, cohesion between sister chromatid arms during meiosis depends on a meiosis-specific cohesin subunit called Rec8, whose mitotic equivalent, Sccl, is cleaved at the metaphase to anaphase transition by an endopeptidase called separin. We show here that cleavage of Rec8 by separin at one of two different sites is necessary for the resolution of chiasmata and the disjunction of homologous chromosomes during meiosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Endopeptidasas , Proteínas Fúngicas/metabolismo , Ligasas , Meiosis/genética , Fosfoproteínas , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Ubiquitina-Proteína Ligasas , Levaduras/citología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Endodesoxirribonucleasas , Esterasas/genética , Esterasas/fisiología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Hibridación Fluorescente in Situ , Mitosis , Modelos Biológicos , Mutación/genética , Separasa , Homología de Secuencia de Ácido Nucleico , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo
16.
Genes Dev ; 14(21): 2757-70, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11069892

RESUMEN

Cohesin complex acts in the formation and maintenance of sister chromatid cohesion during and after S phase. Budding yeast Scc1p/Mcd1p, an essential subunit, is cleaved and dissociates from chromosomes in anaphase, leading to sister chromatid separation. Most cohesin in higher eukaryotes, in contrast, is dissociated from chromosomes well before anaphase. The universal role of cohesin during anaphase thus remains to be determined. We report here initial characterization of four putative cohesin subunits, Psm1, Psm3, Rad21, and Psc3, in fission yeast. They are essential for sister chromatid cohesion. Immunoprecipitation demonstrates stable complex formation of Rad21 with Psm1 and Psm3 but not with Psc3. Chromatin immunoprecipitation shows that cohesin subunits are enriched in broad centromere regions and that the level of centromere-associated Rad21 did not change from metaphase to anaphase, very different from budding yeast. In contrast, Rad21 containing similar cleavage sites to those of Scc1p/Mcd1p is cleaved specifically in anaphase. This cleavage is essential, although the amount of cleaved product is very small (<5%). Mis4, another sister chromatid cohesion protein, plays an essential role for loading Rad21 on chromatin. A simple model is presented to explain the specific behavior of fission yeast cohesin and why only a tiny fraction of Rad21 is sufficient to be cleaved for normal anaphase.


Asunto(s)
Anafase/fisiología , Proteínas Fúngicas/fisiología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Fase S/fisiología , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/fisiología , Centrómero/química , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Marcación de Gen , Genes Fúngicos , Sustancias Macromoleculares , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Fosforilación , Subunidades de Proteína , Schizosaccharomyces/genética , Cohesinas
17.
Nat Cell Biol ; 2(8): 492-9, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10934469

RESUMEN

The multisubunit protein complex cohesin is required to establish cohesion between sister chromatids during S phase and to maintain it during G2 and M phases. Cohesin is essential for mitosis, and even partial defects cause very high rates of chromosome loss. In budding yeast, cohesin associates with specific sites which are distributed along the entire length of a chromosome but are more dense in the vicinity of the centromere. Real-time imaging of individual centromeres tagged with green fluorescent protein suggests that cohesin bound to centromeres is important for bipolar attachment to microtubules. This cohesin is, however, incapable of resisting the consequent force, which leads to sister centromere splitting and chromosome stretching. Meanwhile, cohesin bound to sequences flanking the centromeres prevents sister chromatids from completely unzipping and is required to pull back together sister centromeres that have already split. Cohesin therefore has a central role in generating a dynamic tension between microtubules and sister chromatid cohesion at centromeres, which lasts until chromosome segregation is finally promoted by separin-dependent cleavage of the cohesin subunit Scc1p.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citología , Anafase , Artefactos , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos/genética , Replicación del ADN , Proteínas Fúngicas , Eliminación de Gen , Hibridación Fluorescente in Situ , Modelos Biológicos , Regiones Operadoras Genéticas/genética , Fosfoproteínas , Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo , Secuencias Repetidas en Tándem/genética , Factores de Tiempo , Cohesinas
18.
Mol Cell ; 5(2): 243-54, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10882066

RESUMEN

Cohesion between sister chromatids depends on a multisubunit cohesin complex that binds to chromosomes around DNA replication and dissociates from them at the onset of anaphase. Scc2p, though not a cohesin subunit, is also required for sister chromatid cohesion. We show here that Scc2p forms a complex with a novel protein, Scc4p, which is also necessary for sister cohesion. In scc2 or scc4 mutants, cohesin complexes form normally but fail to bind both to centromeres and to chromosome arms. Our data suggest that a major role for the Scc2p/Scc4p complex is to facilitate the loading of cohesin complexes onto chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregación Cromosómica , Cromosomas Fúngicos/ultraestructura , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Cromatina/metabolismo , Proteínas Cromosómicas no Histona , Proteínas Fúngicas , Unión Proteica , Levaduras , Cohesinas
19.
Chromosoma ; 109(1-2): 27-34, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10855492

RESUMEN

Sister chromatid cohesion is established during DNA replication and depends on a multiprotein complex called cohesin. At the onset of anaphase the cohesive structures that hold sisters together must be destroyed to allow segregation of sisters. In the budding yeast Saccharomyces cerevisiae loss of sister chromatid cohesion depends on a separating protein (separin) called Esp1. At the metaphase to anaphase transition, separin is activated by proteolysis of its inhibitory subunit (securin) called Pds1. This process is mediated by the anaphase promoting complex and an accessory protein Cdc20. In meiosis a single round of DNA replication is followed by two successive rounds of segregation. Thus loss of cohesion is spun out over two divisions. By studying the mechanisms that initiate anaphase in meiotic division we show that the yeast securin Pds1p is present in meiotic nuclei and is destroyed at the onset of each meiotic division. We also show that securin destruction depends on Cdc20p which accumulates within nuclei around the time of Pds1p's disappearance.


Asunto(s)
Anafase/genética , Endopeptidasas , Proteínas Fúngicas/metabolismo , Meiosis/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Técnica del Anticuerpo Fluorescente , Proteínas Fúngicas/genética , Homocigoto , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Securina , Separasa
20.
Science ; 288(5470): 1379-85, 2000 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-10827941

RESUMEN

In eukaryotic cells, sister DNA molecules remain physically connected from their production at S phase until their separation during anaphase. This cohesion is essential for the separation of sister chromatids to opposite poles of the cell at mitosis. It also permits chromosome segregation to take place long after duplication has been completed. Recent work has identified a multisubunit complex called cohesin that is essential for connecting sisters. Proteolytic cleavage of one of cohesin's subunits may trigger sister separation at the onset of anaphase.


Asunto(s)
Anafase , Cromátides/metabolismo , Endopeptidasas , Metafase , Proteínas Nucleares/metabolismo , Complejos de Ubiquitina-Proteína Ligasa , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Proteínas Fúngicas , Heterocromatina/química , Heterocromatina/metabolismo , Humanos , Ligasas/metabolismo , Proteínas Nucleares/química , Separasa , Huso Acromático/fisiología , Ubiquitina-Proteína Ligasas , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA