RESUMEN
Primary gypsum deposits, which accumulated in the Mediterranean Basin during the so-called Messinian salinity crisis (5.97-5.33 Ma), represent an excellent archive of microbial life. We investigated the molecular fossil inventory and the corresponding compound-specific δ13 C values of bottom-grown gypsum formed during the first stage of the crisis in four marginal basins across the Mediterranean (Nijar, Spain; Vena del Gesso, Italy; Heraklion, Crete; and Psematismenos, Cyprus). All studied gypsum samples contain intricate networks of filamentous microfossils, whose phylogenetic affiliation has been debated for a long time. Petrographic analysis, molecular fossil inventories (hydrocarbons, alcohols, and carboxylic acids), and carbon stable isotope patterns suggest that the mazes of filamentous fossils represent benthic microbial assemblages dominated by chemotrophic sulfide-oxidizing bacteria; in some of the samples, the body fossils are accompanied by lipids produced by sulfate-reducing bacteria. Abundant isoprenoid alcohols including diphytanyl glycerol diethers (DGDs) and glycerol dibiphytanyl glycerol tetraethers (GDGTs), typified by highly variable carbon stable isotope composition with δ13 C values spanning from -40 to -14, reveal the presence of planktic and benthic archaeal communities dwelling in Messinian paleoenvironments. The compound inventory of archaeal lipids indicates the existence of a stratified water column, with a normal marine to diluted upper water column and more saline deeper waters. This study documents the lipid biomarker inventory of microbial life preserved in ancient gypsum deposits, helping to reconstruct the widely debated conditions under which Messinian gypsum formed.
Asunto(s)
Sulfato de Calcio , Sedimentos Geológicos , Archaea , Bacterias , Sedimentos Geológicos/microbiología , FilogeniaRESUMEN
The sulfur-bearing limestones interbedded in the upper Miocene diatomaceous sediments (Tripoli Formation) of the Lorca Basin (SE Spain) are typified, as other Mediterranean coeval carbonate and gypsum deposits, by filamentous, circular and rod-shaped microstructures of controversial origin. These features have been interpreted both as fecal pellets of brine shrimps and/or of copepods, remains of algae or cyanobacteria and fossilized sulfide-oxidizing bacteria. To shed light on their origin, a multidisciplinary study including optical, UV and scanning electron microscopy, Raman microspectroscopy, and geochemical (carbon and oxygen stable isotopes) analyses has been carried out on three carbonate beds exposed along the La Serrata ridge. The different composition of the filamentous and circular objects with respect to the rod-shaped microstructures suggest that the former represent remains of bacteria, while the latter fecal pellets of deposit- or suspension-feeder organisms. Size and shape of the filamentous and circular microfossils are consistent with their assignment to colorless sulfide-oxidizing bacteria like Beggiatoa (or Thioploca) and Thiomargarita, which is further supported by the presence, only within the microfossil body, of tiny pyrite grains. These grains possibly result from early diagenetic transformation of original sulfur globules stored by the bacteria, which are a diagnostic feature of this group of prokaryotes. The development of microbial communities dominated by putative sulfide-oxidizing bacteria at Lorca was favored by hydrogen sulfide flows generated through degradation of organic matter by sulfate-reducing bacteria thriving in underlying organic-rich sediments.