Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1407097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100099

RESUMEN

Introduction: Obesity is a major risk factor associated with multiple pathological conditions including diabetes and cardiovascular disease. Endothelial dysfunction is an early predictor of obesity. However, little is known regarding how early endothelial changes trigger obesity. In the present work we report a novel endothelial-mediated mechanism essential for regulation of metabolic homeostasis, driven by c-Myc. Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in metabolic homeostasis during aging and high-fat diet exposure. Body weight and metabolic parameters were collected over time and tissue samples collected at endpoint for biochemical, pathology and RNA-sequencing analysis. Animals exposed to high-fat diet were also evaluated for cardiac dysfunction. Results: In the present study we demonstrate that EC-Myc KO triggers endothelial dysfunction, which precedes progressive increase in body weight during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals showed significant increase in white adipose tissue mass relative to control littermates, which was associated with sex-specific changes in whole body metabolism and increase in systemic leptin. Overexpression of endothelial c-Myc attenuated diet-induced obesity and visceral fat accumulation and prevented the development of glucose intolerance and cardiac dysfunction. Transcriptome analysis of skeletal muscle suggests that the protective effects promoted by endothelial c-Myc overexpression are associated with the expression of genes known to increase weight loss, energy expenditure and glucose tolerance. Conclusion: Our results show a novel important role for endothelial c-Myc in regulating metabolic homeostasis and suggests its potential targeting in preventing obesity and associated complications such as diabetes type-2 and cardiovascular dysfunction.

2.
IEEE J Transl Eng Health Med ; 12: 298-305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410184

RESUMEN

OBJECTIVE: Metabolic changes have been extensively documented in neurodegenerative brain disorders, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, a disorder that, like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting a broader functional insult arising from reduced MBLAC1 protein expression and one possibly linked to metabolic alterations. METHODS: Our current studies, utilizing Mblac1 knockout (KO) mice, seek to determine whether mitochondrial respiration is affected in the peripheral tissues of these mice. We quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in livers and kidneys of wild-type (WT) mice and their homozygous KO littermates of males and females, using 3D optical cryo-imaging. RESULTS: Compared to WT, the RR of livers from KO mice was significantly reduced, without an apparent sex effect, driven predominantly by significantly lower NADH levels. In contrast, no genotype and sex differences were observed in kidney samples. Serum analyses of WT and KO mice revealed significantly elevated glucose levels in young and aged KO adults and diminished cholesterol levels in the aged KOs, consistent with liver dysfunction. DISCUSSION/CONCLUSION: As seen with C. elegans swip-10 mutants, loss of MBLAC1 protein results in metabolic changes that are not restricted to neural cells and are consistent with the presence of peripheral comorbidities accompanying neurodegenerative disease in cases where MBLAC1 expression changes impact risk.


Asunto(s)
Caenorhabditis elegans , Enfermedades Neurodegenerativas , Animales , Femenino , Humanos , Ratones , Masculino , Anciano , Ratones Noqueados , Caenorhabditis elegans/genética , Enfermedades Neurodegenerativas/diagnóstico por imagen , NAD/metabolismo , Neuronas Dopaminérgicas/metabolismo , Imagen Óptica
3.
J Biophotonics ; 17(2): e202300331, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822188

RESUMEN

Metformin hydrochloride, an antihyperglycemic agent, and sulindac, a nonsteroidal anti-inflammatory drug, are FDA-approved drugs known to exert anticancer effects. Previous studies demonstrated sulindac and metformin's anticancer properties through mitochondrial dysfunction and inhibition of mitochondrial electron transport chain complex I and key signaling pathways. In this study, various drugs were administered to A549 lung cancer cells, and results revealed that a combination of sulindac and metformin enhanced cell death compared to the administration of the drugs separately. To measure superoxide production over time, we employed a time-lapse fluorescence imaging technique using mitochondrial-targeted hydroethidine. Fluorescence microscopy data showed the most significant increases in superoxide production in the combination treatment of metformin and sulindac. Results showed significant differences between the combined drug treatment and control groups and between the positive control and control groups. This approach can be utilized to quantify the anticancer efficacy of drugs, creating possibilities for additional therapeutic options.


Asunto(s)
Neoplasias Pulmonares , Metformina , Humanos , Sulindac/farmacología , Sulindac/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Superóxidos , Preparaciones Farmacéuticas , Imagen de Lapso de Tiempo , Línea Celular Tumoral , Microscopía Fluorescente , Metformina/farmacología , Metformina/uso terapéutico
4.
Artículo en Inglés | MEDLINE | ID: mdl-38083729

RESUMEN

Metabolic changes have been extensively documented in brain tissue undergoing neurodegeneration, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, that like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting the possibility of a broader functional insult arising from reduced MBLAC1 protein expression, and one possibly linked to metabolic alterations. Our current studies, utilizing Mblac1 knockout (KO) mice, seeks to determine whether mitochondrial respiration is affected in peripheral tissues of these animals in this model. To initiate these studies, we quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in the livers of wild type (WT) mice and their homozygous KO littermates, using 3D optical cryo-imaging. We found that Mblac1 KO mice exhibited a greater oxidized redox state compared to WT mice. When compared to the WT group, the redox ratio of KO mice was decreased by 46.32%, driven predominantly by significantly lower NADH levels (more oxidized state). We speculate that, as seen with C. elegans swip-10 mutants, that loss of MBLAC1 protein results in deficits in tricarboxylic acid cycle (TCA) production of NADH and FAD TCA that leads to diminished cellular ATP production and oxidative stress. Such observations are consistent with changes that in the central nervous system (CNS) could support neurodegeneration and in the periphery account for comorbidities.


Asunto(s)
Enfermedad de Alzheimer , Caenorhabditis elegans , Animales , Humanos , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Hígado , Ratones Noqueados , NAD/metabolismo , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA