Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
2.
Gastroenterology ; 167(5): 903-918, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38971196

RESUMEN

BACKGROUND & AIMS: WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS: We have developed mouse models to control the specific expression of an oncogenic form of ß-catenin (CTNNB1) in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS: We report that constitutive ß-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit ß-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting ß-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting ß-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION: Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.


Asunto(s)
Molécula de Adhesión Celular Epitelial , Lisosomas , Proteínas Proto-Oncogénicas c-myc , Neoplasias Gástricas , Vía de Señalización Wnt , beta Catenina , Animales , Femenino , Humanos , Masculino , Ratones , beta Catenina/metabolismo , beta Catenina/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Regulación Neoplásica de la Expresión Génica , Lisosomas/metabolismo , Ratones Transgénicos , Organoides/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
3.
Mol Syst Biol ; 20(6): 626-650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724853

RESUMEN

More than 500 kinases are implicated in the control of most cellular process in mammals, and deregulation of their activity is linked to cancer and inflammatory disorders. 80 clinical kinase inhibitors (CKIs) have been approved for clinical use and hundreds are in various stages of development. However, CKIs inhibit other kinases in addition to the intended target(s), causing both enhanced clinical effects and undesired side effects that are only partially predictable based on in vitro selectivity profiling. Here, we report an integrative approach grounded on the use of chromatin modifications as unbiased, information-rich readouts of the functional effects of CKIs on macrophage activation. This approach exceeded the performance of transcriptome-based approaches and allowed us to identify similarities and differences among CKIs with identical intended targets, to recognize novel CKI specificities and to pinpoint CKIs that may be repurposed to control inflammation, thus supporting the utility of this strategy to improve selection and use of CKIs in clinical settings.


Asunto(s)
Epigenoma , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Animales , Ratones , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
4.
Cell Genom ; 4(5): 100557, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723607

RESUMEN

We explored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes and are associated to specific transcriptional programs and to patient survival patterns. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including, e.g., muscarinic, adenosine, 5-hydroxytryptamine, and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens, which we further validated. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).


Asunto(s)
Neoplasias , Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Ligandos , Regulación Neoplásica de la Expresión Génica
5.
Sci Adv ; 10(13): eadk5386, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536927

RESUMEN

While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.


Asunto(s)
Carcinoma Ductal Pancreático , Retrovirus Endógenos , Neoplasias Pancreáticas , Humanos , Retrovirus Endógenos/genética , Transducción de Señal , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo
6.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518775

RESUMEN

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Membrana Basal/metabolismo , Sistema Nervioso
7.
Mol Cell ; 84(5): 967-980.e10, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38242130

RESUMEN

Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.


Asunto(s)
Histonas , Óxido Nítrico , Histonas/genética , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Óxido Nítrico/metabolismo , Complejo Mediador/metabolismo , Oxidorreductasas/metabolismo
8.
PLoS One ; 19(1): e0282546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198467

RESUMEN

Whether Clonal Hematopoiesis (CH) represents a risk factor for severity of the COVID-19 disease remains a controversial issue. We report the first high- sensitivity analysis of CH in COVID-19 patients (threshold of detection at 0.5% vs 1 or 2% in previous studies). We analyzed 24 patients admitted to ICU for COVID-19 (COV-ICU) and 19 controls, including healthy subjects and asymptomatic SARS-CoV2-positive individuals. Despite the significantly higher numbers of CH mutations identified (80% mutations with <2% variant allele frequency, VAF), we did not find significant differences between COV-ICU patients and controls in the prevalence of CH or in the numbers, VAF or functional categories of the mutated genes, suggesting that CH is not overrepresented in patients with COVID-19. However, when considering potential drivers CH mutations (CH-PD), COV-ICU patients showed higher clonal complexity, in terms of both mutation numbers and VAF, and enrichment of variants reported in myeloid neoplasms. However, we did not score an impact of increased CH-PD on patient survival or clinical parameters associated with inflammation. These data suggest that COVID-19 influence the clonal composition of the peripheral blood and call for further investigations addressing the potential long-term clinical impact of CH on people experiencing severe COVID-19. We acknowledge that it will indispensable to perform further studies on larger patient cohorts in order to validate and generalize our conclusions. Moreover, we performed CH analysis at a single time point. It will be necessary to consider longitudinal approaches with long periods of follow-up in order to assess if the COVID-19 disease could have an impact on the evolution of CH and long-term consequences in patients that experienced severe COVID-19.


Asunto(s)
COVID-19 , Hematopoyesis Clonal , Humanos , Hematopoyesis Clonal/genética , ARN Viral , COVID-19/genética , SARS-CoV-2/genética , Mutación
9.
Cancer Discov ; 14(1): 36-48, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38047596

RESUMEN

Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chromatin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces interact and influence each other while shaping tumor progression. A comprehensive characterization of the cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery. SIGNIFICANCE: Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, experimental and theoretical approaches must account for multiple evolutionary mechanisms and their interactions to ultimately understand, predict, and steer tumor evolution.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Epigenómica , Medicina de Precisión , Microambiente Tumoral/genética
10.
Genes Dev ; 37(21-24): 1017-1040, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38092518

RESUMEN

Transcription termination pathways mitigate the detrimental consequences of unscheduled promiscuous initiation occurring at hundreds of thousands of genomic cis-regulatory elements. The Restrictor complex, composed of the Pol II-interacting protein WDR82 and the RNA-binding protein ZC3H4, suppresses processive transcription at thousands of extragenic sites in mammalian genomes. Restrictor-driven termination does not involve nascent RNA cleavage, and its interplay with other termination machineries is unclear. Here we show that efficient termination at Restrictor-controlled extragenic transcription units involves the recruitment of the protein phosphatase 1 (PP1) regulatory subunit PNUTS, a negative regulator of the SPT5 elongation factor, and Symplekin, a protein associated with RNA cleavage complexes but also involved in cleavage-independent and phosphatase-dependent termination of noncoding RNAs in yeast. PNUTS and Symplekin act synergistically with, but independently from, Restrictor to dampen processive extragenic transcription. Moreover, the presence of limiting nuclear levels of Symplekin imposes a competition for its recruitment among multiple transcription termination machineries, resulting in mutual regulatory interactions. Hence, by synergizing with Restrictor, Symplekin and PNUTS enable efficient termination of processive, long-range extragenic transcription.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , ARN Polimerasa II/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Unión al ARN/metabolismo , Procesamiento Proteico-Postraduccional , Mamíferos/genética
11.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37398064

RESUMEN

We explored the dysregulation of GPCR ligand signaling systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes, which revealed that multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes. We showed that biosynthetic pathway enrichment from enzyme expression recapitulated pathway activity signatures from metabolomics datasets, providing valuable surrogate information for GPCRs responding to organic ligands. We found that several GPCRs signaling components were significantly associated with patient survival in a cancer type-specific fashion. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many pairs involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including e.g., muscarinic, adenosine, 5-hydroxytryptamine and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).

12.
Gut ; 72(1): 109-128, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568393

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinomas (PDACs) include heterogeneous mixtures of low-grade cells forming pseudoglandular structures and compact nests of high-grade cells organised in non-glandular patterns. We previously reported that low-grade PDAC cells display high expression of interferon regulatory factor 1 (IRF1), a pivotal transcription factor of the interferon (IFN) system, suggesting grade-specific, cell-intrinsic activation of IFN responses. Here, we set out to determine the molecular bases and the functional impact of the activation of IFN-regulated responses in human PDACs. DESIGN: We first confirmed the correlation between glandular differentiation and molecular subtypes of PDAC on the one hand, and the expression of IRF1 and IFN-stimulated genes on the other. We next used unbiased omics approaches to systematically analyse basal and IFN-regulated responses in low-grade and high-grade PDAC cells, as well as the impact of IRF1 on gene expression programmes and metabolic profiles of PDAC cells. RESULTS: High-level expression of IRF1 in low-grade PDAC cells was controlled by endodermal lineage-determining transcription factors. IRF1-regulated gene expression equipped low-grade PDAC cells with distinctive properties related to antigen presentation and processing as well as responsiveness to IFN stimulation. Notably, IRF1 also controlled the characteristic metabolic profile of low-grade PDAC cells, suppressing both mitochondrial respiration and fatty acid synthesis, which may in part explain its growth-inhibiting activity. CONCLUSION: IRF1 links endodermal differentiation to the expression of genes controlling antigen presentation and processing as well as to the specification of the metabolic profile characteristic of classical PDAC cells.


Asunto(s)
Regulación de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Interferones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
13.
Nat Struct Mol Biol ; 29(12): 1148-1158, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36482255

RESUMEN

Enhancers play a central role in the spatiotemporal control of gene expression and tend to work in a cell-type-specific manner. In addition, they are suggested to be major contributors to phenotypic variation, evolution and disease. There is growing evidence that enhancer dysfunction due to genetic, structural or epigenetic mechanisms contributes to a broad range of human diseases referred to as enhanceropathies. Such mechanisms often underlie the susceptibility to common diseases, but can also play a direct causal role in cancer or Mendelian diseases. Despite the recent gain of insights into enhancer biology and function, we still have a limited ability to predict how enhancer dysfunction impacts gene expression. Here we discuss the major challenges that need to be overcome when studying the role of enhancers in disease etiology and highlight opportunities and directions for future studies, aiming to disentangle the molecular basis of enhanceropathies.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , Humanos , Elementos de Facilitación Genéticos/genética
14.
Nat Commun ; 13(1): 6266, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271073

RESUMEN

Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD.


Asunto(s)
ADN Metiltransferasa 3A , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Células CACO-2 , Mucosa Intestinal/metabolismo , Colon/patología , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Factores de Necrosis Tumoral/metabolismo , ADN/metabolismo
15.
Trends Immunol ; 43(9): 693-695, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945112

RESUMEN

Mutations in two antagonistic regulators of DNA methylation, DNMT3A and TET2, are associated with clonal hematopoiesis and increased risk of cardiovascular disorders. Recently, Cobo et al. traced the mechanistic bases for such links to loss of mitochondrial integrity, cytoplasmic dispersion of mitochondrial DNA, and the subsequent activation of interferon-stimulated genes (ISGs) in macrophages.


Asunto(s)
Enfermedades Cardiovasculares , Hematopoyesis Clonal , Hematopoyesis , Humanos , Inflamación , Mutación
16.
Genes Dev ; 36(7-8): 414-432, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35361678

RESUMEN

Six methyltransferases divide labor in establishing genomic profiles of histone H3 lysine 9 methylation (H3K9me), an epigenomic modification controlling constitutive heterochromatin, gene repression, and silencing of retroelements. Among them, SETDB1 is recruited to active chromatin domains to silence the expression of endogenous retroviruses. In the context of experiments aimed at determining the impact of SETDB1 on stimulus-inducible gene expression in macrophages, we found that loss of H3K9me3 caused by SETDB1 depletion was associated with increased recruitment of CTCF to >1600 DNA binding motifs contained within SINE B2 repeats, a previously unidentified target of SETDB1-mediated repression. CTCF is an essential regulator of chromatin folding that restrains DNA looping by cohesin, thus creating boundaries among adjacent topological domains. Increased CTCF binding to SINE B2 repeats enhanced insulation at hundreds of sites and increased loop formation within topological domains containing lipopolysaccharide-inducible genes, which correlated with their impaired regulation in response to stimulation. These data indicate a role of H3K9me3 in restraining genomic distribution and activity of CTCF, with an impact on chromatin organization and gene regulation.


Asunto(s)
Cromatina , Silenciador del Gen , Heterocromatina , Metilación , Retroelementos
17.
PLoS Biol ; 20(2): e3001538, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143476

RESUMEN

Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family of transcription factors, and its activation-induced down-regulation was linked to their reduced expression. By performing miRNA pull-down and sequencing experiments, we identified PDGFA-associated protein 1 (PDAP1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as an RNA-binding protein (RBP), and its CRISPR/Cas-9-mediated deletion revealed that it prominently contributed to the regulation of T-cell proliferation. Overall, using an integrated approach involving quantitative analysis, unbiased genomics, and genome editing, we identified RFX factors, miR-150, and the PDAP1 RBP as the components of a regulatory axis that restrains proliferation of primary human T lymphocytes.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular/genética , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , MicroARNs/genética , Factores de Transcripción del Factor Regulador X/genética , Regiones no Traducidas 3'/genética , Western Blotting , Linfocitos T CD4-Positivos/citología , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Jurkat , Activación de Linfocitos/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
18.
PLoS One ; 17(1): e0263014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100309

RESUMEN

The correlation between immune responses and protection from SARS-CoV-2 infections and its duration remains unclear. We performed a sanitary surveillance at the European Institute of Oncology (IEO) in Milan over a 17 months period. Pre-vaccination, in 1,493 participants, we scored 266 infections (17.8%) and 8 possible reinfections (3%). Post-vaccination, we identified 30 infections in 2,029 vaccinated individuals (1.5%). We report that the probability of infection post-vaccination is i) significantly lower compared to natural infection, ii) associated with a significantly shorter median duration of infection than that of first infection and reinfection, iii) anticorrelated with circulating antibody levels.


Asunto(s)
Anticuerpos Antiidiotipos/sangre , Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , Inmunoglobulina G/sangre , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antiidiotipos/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/prevención & control , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Vacunación Masiva , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Factores de Tiempo , Adulto Joven
19.
FEBS J ; 289(23): 7399-7410, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34323016

RESUMEN

ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.


Asunto(s)
ADP Ribosa Transferasas , Biosíntesis de Proteínas , ADP Ribosa Transferasas/genética , Adenosina Difosfato Ribosa , Adenosina Difosfato
20.
Science ; 373(6561): eabj0486, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34529467

RESUMEN

Inflammation is a major risk factor for pancreatic ductal adenocarcinoma (PDAC). When occurring in the context of pancreatitis, KRAS mutations accelerate tumor development in mouse models. We report that long after its complete resolution, a transient inflammatory event primes pancreatic epithelial cells to subsequent transformation by oncogenic KRAS. Upon recovery from acute inflammation, pancreatic epithelial cells display an enduring adaptive response associated with sustained transcriptional and epigenetic reprogramming. Such adaptation enables the reactivation of acinar-to-ductal metaplasia (ADM) upon subsequent inflammatory events, thereby limiting tissue damage through a rapid decrease of zymogen production. We propose that because activating mutations of KRAS maintain an irreversible ADM, they may be beneficial and under strong positive selection in the context of recurrent pancreatitis.


Asunto(s)
Células Acinares/patología , Carcinogénesis , Carcinoma Ductal Pancreático/patología , Genes ras , Páncreas/patología , Pancreatitis/fisiopatología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/fisiopatología , Transformación Celular Neoplásica , Células Cultivadas , Reprogramación Celular , Cromatina/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Precursores Enzimáticos/metabolismo , Epigénesis Genética , Células Epiteliales/patología , Células Epiteliales/fisiología , Femenino , Sistema de Señalización de MAP Quinasas , Masculino , Metaplasia , Ratones , Mutación , Páncreas/metabolismo , Pancreatitis/genética , Pancreatitis/inmunología , Esferoides Celulares , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA