Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Nat Commun ; 15(1): 5745, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987239

RESUMEN

Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Estrés Oxidativo , Piruvaldehído , Ácido Pirúvico , Animales , Piruvaldehído/metabolismo , Humanos , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ácido Pirúvico/metabolismo , Masculino , Barrera Hematoencefálica/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Femenino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología
2.
Diabetes Care ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905209

RESUMEN

OBJECTIVE: Prolonged catabolic states in type 2 diabetes (T2D), exacerbated by excess substrate flux and hyperglycemia, can challenge metabolic flexibility and antioxidative capacity. We investigated cellular responses to glucose load after prolonged fasting in T2D. RESEARCH DESIGN AND METHODS: Glucose-tolerant individuals (CON, n = 10), T2D individuals with (T2D+, n = 10) and without diabetes complications (T2D-, n = 10) underwent oral glucose tolerance test before and after a 5-day fasting-mimicking diet. Peripheral blood mononuclear cells' (PBMC) resistance to ex vivo dicarbonyl methylglyoxal (MG) exposure after glucose load was assessed. Markers of dicarbonyl detoxification, oxidative stress, and mitochondrial biogenesis were analyzed by quantitative PCR, with mitochondrial complex protein expression assessed by western blotting. RESULTS: T2D+ exhibited decreased PBMC resistance against MG, while T2D- resistance remained unchanged, and CON improved postglucose load and fasting (-19.0% vs.-1.7% vs. 12.6%; all P = 0.017). T2D+ showed increased expression in dicarbonyl detoxification (mRNA glyoxalase-1, all P = 0.039), oxidative stress (mRNA glutathione-disulfide-reductase, all P = 0.006), and mitochondrial complex V protein (all P = 0.004) compared with T2D- and CON postglucose load and fasting. Citrate synthase activity remained unchanged, indicating no change in mitochondrial number. Mitochondrial biogenesis increased in T2D- compared with CON postglucose load and fasting (mRNA HspA9, P = 0.032). T2D-, compared with CON, exhibited increased oxidative stress postfasting, but not postglucose load, with increased mRNA expression in antioxidant defenses (mRNA forkhead box O4, P = 0.036, and glutathione-peroxidase-2, P = 0.034), and compared with T2D+ (glutathione-peroxidase-2, P = 0.04). CONCLUSIONS: These findings suggest increased susceptibility to glucose-induced oxidative stress in individuals with diabetes complications after prolonged fasting and might help in diet interventions for diabetes management.

3.
Metabolites ; 14(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38668337

RESUMEN

The underlying molecular mechanisms for the development of non-alcoholic fatty liver (NAFL) and its progression to advanced liver diseases remain elusive. Glyoxalase 1 (Glo1) loss, leading to elevated methylglyoxal (MG) and dicarbonyl stress, has been implicated in various diseases, including obesity-related conditions. This study aimed to investigate changes in the glyoxalase system in individuals with non-pathological liver fat. Liver biopsies were obtained from 30 individuals with a narrow range of BMI (24.6-29.8 kg/m2). Whole-body insulin sensitivity was assessed using HOMA-IR. Liver biopsies were analyzed for total triglyceride content, Glo1 and Glo2 mRNA, protein expression, and activity. Liquid chromatography-tandem mass spectrometry determined liver dicarbonyl content and oxidation and glycation biomarkers. Liver Glo1 activity showed an inverse correlation with HOMA-IR and liver triglyceride content, but not BMI. Despite reduced Glo1 activity, no associations were found with elevated liver dicarbonyls or glycation markers. A sex dimorphism was observed in Glo1, with females exhibiting significantly lower liver Glo1 protein expression and activity, and higher liver MG-H1 content compared to males. This study demonstrates that increasing liver fat, even within a non-pathological range, is associated with reduced Glo1 activity.

4.
EBioMedicine ; 101: 105007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354534

RESUMEN

BACKGROUND: The dicarbonyl compounds methylglyoxal (MG), glyoxal (GO) and 3-deoxyglucosone (3-DG) have been linked to various diseases. However, disease-independent phenotypic and genotypic association studies with phenome-wide and genome-wide reach, respectively, have not been provided. METHODS: MG, GO and 3-DG were measured by LC-MS in 1304 serum samples of two populations (KORA, n = 482; BiDirect, n = 822) and assessed for associations with genome-wide SNPs (GWAS) and with phenome-wide traits. Redundancy analysis (RDA) was used to identify major independent trait associations. FINDINGS: Mutual correlations of dicarbonyls were highly significant, being stronger between MG and GO (ρ = 0.6) than between 3-DG and MG or GO (ρ = 0.4). Significant phenotypic results included associations of all dicarbonyls with sex, waist-to-hip ratio, glomerular filtration rate (GFR), gamma-glutamyltransferase (GGT), and hypertension, of MG and GO with age and C-reactive protein, of GO and 3-DG with glucose and antidiabetics, of MG with contraceptives, of GO with ferritin, and of 3-DG with smoking. RDA revealed GFR, GGT and, in case of 3-DG, glucose as major contributors to dicarbonyl variance. GWAS did not identify genome-wide significant loci. SNPs previously associated with glyoxalase activity did not reach nominal significance. When multiple testing was restricted to the lead SNPs of GWASs on the traits selected by RDA, 3-DG was found to be associated (p = 2.3 × 10-5) with rs1741177, an eQTL of NF-κB inhibitor NFKBIA. INTERPRETATION: This large-scale, population-based study has identified numerous associations, with GFR and GGT being of pivotal importance, providing unbiased perspectives on dicarbonyls beyond the current state. FUNDING: Deutsche Forschungsgemeinschaft, Helmholtz Munich, German Centre for Cardiovascular Research (DZHK), German Federal Ministry of Research and Education (BMBF).


Asunto(s)
Estudio de Asociación del Genoma Completo , gamma-Glutamiltransferasa , Humanos , Tasa de Filtración Glomerular , Piruvaldehído/metabolismo , Glioxal/metabolismo , Glucosa , Polimorfismo de Nucleótido Simple
5.
Cardiovasc Res ; 120(4): 385-402, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38175781

RESUMEN

AIMS: Cyclophilin A (CyPA) induces leucocyte recruitment and platelet activation upon release into the extracellular space. Extracellular CyPA therefore plays a critical role in immuno-inflammatory responses in tissue injury and thrombosis upon platelet activation. To date, CD147 (EMMPRIN) has been described as the primary receptor mediating extracellular effects of CyPA in platelets and leucocytes. The receptor for advanced glycation end products (RAGE) shares inflammatory and prothrombotic properties and has also been found to have similar ligands as CD147. In this study, we investigated the role of RAGE as a previously unknown interaction partner for CyPA. METHODS AND RESULTS: Confocal imaging, proximity ligation, co-immunoprecipitation, and atomic force microscopy were performed and demonstrated an interaction of CyPA with RAGE on the cell surface. Static and dynamic cell adhesion and chemotaxis assays towards extracellular CyPA using human leucocytes and leucocytes from RAGE-deficient Ager-/- mice were conducted. Inhibition of RAGE abrogated CyPA-induced effects on leucocyte adhesion and chemotaxis in vitro. Accordingly, Ager-/- mice showed reduced leucocyte recruitment and endothelial adhesion towards CyPA in vivo. In wild-type mice, we observed a downregulation of RAGE on leucocytes when endogenous extracellular CyPA was reduced. We furthermore evaluated the role of RAGE for platelet activation and thrombus formation upon CyPA stimulation. CyPA-induced activation of platelets was found to be dependent on RAGE, as inhibition of RAGE, as well as platelets from Ager-/- mice showed a diminished activation and thrombus formation upon CyPA stimulation. CyPA-induced signalling through RAGE was found to involve central signalling pathways including the adaptor protein MyD88, intracellular Ca2+ signalling, and NF-κB activation. CONCLUSION: We propose RAGE as a hitherto unknown receptor for CyPA mediating leucocyte as well as platelet activation. The CyPA-RAGE interaction thus represents a novel mechanism in thrombo-inflammation.


Asunto(s)
Ciclofilina A , Trombosis , Ratones , Humanos , Animales , Ciclofilina A/genética , Ciclofilina A/metabolismo , Productos Finales de Glicación Avanzada , Ligandos , Inflamación , Basigina/metabolismo , Trombosis/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38215056

RESUMEN

CONTEXT: Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routine leading to increased morbidity and mortality. OBJECTIVE: We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory and physical markers of DPN to evaluate PhA as possible diagnostic method for DPN. MATERIALS AND METHODS: In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), amongst which 63 had DPN. The PhA was calculated from multi-frequency BIA. Nerve conduction studies (NCS), quantitative sensory testing (QST) and diffusion-weighted magnetic resonance neurography (MRN) to determine fractional anisotropy (FA) reflecting peripheral nerve integrity were performed. RESULTS: T2D patients with DPN had lower PhA values (5.71 ± 0.10) compared to T2D patients without DPN (6.07 ± 0.08, p = 0.007, + 6.1%) and healthy controls (6.18 ± 0.08, p < 0.001, + 7.9%). Confounder-adjusted analyses showed correlations of the PhA with conduction velocities and amplitudes of the peroneal (ß=0.28; ß=0.31, p < 0.001) and tibial nerves (ß=0.28; ß=0.32, p < 0.001), Z-scores of QST (thermal detection ß=0.30, p < 0.05) and the FA (ß=0.60, p < 0.001). ROC analysis showed similar performance of PhA in comparison to mentioned diagnostic methods. CONCLUSION: The study shows that PhA is in comparison to other test systems used, at least an equally good and much easier to handle, investigator independent marker for detection of DPN.

7.
Biochem J ; 481(1): 33-44, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112318

RESUMEN

Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Humanos , Piruvaldehído/metabolismo , Proinsulina , Péptidos/química , Endopeptidasas
8.
Xenotransplantation ; 30(5): e12819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37548062

RESUMEN

Primary adrenal insufficiency is a life-threatening disorder, which requires lifelong hormone replacement therapy. Transplantation of xenogeneic adrenal cells is a potential alternative approach for the treatment of adrenal insufficiency. For a successful outcome of this replacement therapy, transplanted cells should provide adequate hormone secretion and respond to adrenal physiological stimuli. Here, we describe the generation and characterization of primary porcine adrenal spheroids capable of replacing the function of adrenal glands in vivo. Cells within the spheroids morphologically resembled adult adrenocortical cells and synthesized and secreted adrenal steroid hormones in a regulated manner. Moreover, the embedding of the spheroids in alginate led to the formation of cellular elongations of steroidogenic cells migrating centripetally towards the inner part of the slab, similar to zona Fasciculata cells in the intact organ. Finally, transplantation of adrenal spheroids in adrenalectomized SCID mice reversed the adrenal insufficiency phenotype, which significantly improved animals' survival. Overall, such adrenal models could be employed for disease modeling and drug testing, and represent the first step toward potential clinical trials in the future.


Asunto(s)
Corteza Suprarrenal , Insuficiencia Suprarrenal , Ratones , Animales , Porcinos , Corteza Suprarrenal/fisiología , Corteza Suprarrenal/trasplante , Trasplante Heterólogo , Ratones SCID , Trasplante de Células
9.
Cardiovasc Diabetol ; 22(1): 173, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438755

RESUMEN

BACKGROUND: Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS: In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS: Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS: The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.


Asunto(s)
Antifibrinolíticos , Hiperglucemia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico , Glioxal , Piruvaldehído , Estudios de Cohortes , Hiperglucemia/diagnóstico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Accidente Cerebrovascular/diagnóstico , Aminoácidos , Glucosa , Glicopirrolato
10.
Nat Commun ; 13(1): 5062, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030260

RESUMEN

A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Diabetes Mellitus , Nefropatías Diabéticas , Hiperglucemia , Animales , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Diabetes Mellitus/patología , Nefropatías Diabéticas/patología , Humanos , Hiperglucemia/patología , Riñón
11.
Ann Surg ; 276(5): 814-821, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35880762

RESUMEN

OBJECTIVE: Metabolic dysfunction-associated fatty liver disease (MAFLD) reflects the multifactorial pathogenesis of fatty liver disease in metabolically sick patients. The effects of metabolic surgery on MAFLD have not been investigated. This study assesses the impact of Roux-en-Y gastric bypass (RYGB) on MAFLD in a prototypical cohort outside the guidelines for obesity surgery. METHODS: Twenty patients were enrolled in this prospective, single-arm trial investigating the effects of RYGB on advanced metabolic disease (DRKS00004605). Inclusion criteria were an insulin-dependent type 2 diabetes, body mass index of 25 to 35 kg/m 2 , glucagon-stimulated C-peptide of >1.5 ng/mL, glycated hemoglobin >7%, and age 18 to 70 years. A RYGB with intraoperative liver biopsies and follow-up liver biopsies 3 years later was performed. Steatohepatitis was assessed by expert liver pathologists. Data were analyzed using the Wilcoxon rank sum test and a P value <0.05 was defined as significant. RESULTS: MAFLD completely resolved in all patients 3 years after RYGB while fibrosis improved as well. Fifty-five percent were off insulin therapy with a significant reduction in glycated hemoglobin (8.45±0.27% to 7.09±0.26%, P =0.0014). RYGB reduced systemic and hepatic nitrotyrosine levels likely through upregulation of NRF1 and its dependent antioxidative and mitochondrial genes. In addition, central metabolic regulators such as SIRT1 and FOXO1 were upregulated while de novo lipogenesis was reduced and ß-oxidation was improved in line with an improvement of insulin resistance. Lastly, gastrointestinal hormones and adipokines secretion were changed favorably. CONCLUSIONS: RYGB is a promising therapy for MAFLD even in low-body mass index patients with insulin-treated type 2 diabetes with complete histologic resolution. RYGB restores the oxidative balance, adipose tissue function, and gastrointestinal hormones.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Hormonas Gastrointestinales , Hepatopatías , Obesidad Mórbida , Adipoquinas , Adolescente , Adulto , Anciano , Glucemia/metabolismo , Índice de Masa Corporal , Péptido C , Diabetes Mellitus Tipo 2/complicaciones , Hormonas Gastrointestinales/metabolismo , Glucagón , Hemoglobina Glucada/metabolismo , Humanos , Insulina , Hepatopatías/complicaciones , Persona de Mediana Edad , Obesidad Mórbida/complicaciones , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Estudios Prospectivos , Sirtuina 1 , Adulto Joven
12.
Eur J Neurol ; 29(10): 3081-3091, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700123

RESUMEN

BACKGROUND AND PURPOSE: Diabetic sensorimotor peripheral neuropathy is usually considered to affect predominantly the lower limbs (LL-N), whereas the impact of upper limb neuropathy (UL-N) on hand functional performance and quality of life (QoL) has not been evaluated systematically. This study aims to investigate the prevalence and characteristics of UL-N and its functional and psychosocial consequences in type 2 diabetes. METHODS: Individuals with type 2 diabetes (n = 141) and an age- and sex-matched control group (n = 73) underwent comprehensive assessment of neuropathy, hand functional performance, and psychosocial status. RESULTS: The prevalence of UL-N was 30.5% in patients with diabetes and that of LL-N was 49.6%, with 25.5% exhibiting both. Patients with diabetes showed similar sensory phenotype regarding both large and small fiber functions in hands and feet. Patients with UL-N showed reduced manual dexterity, but normal hand grip force. Additionally, there was a correlation between reduced dexterity and sensory deficits. Patients with UL-N had reduced estimates of psychosocial health including health-related QoL compared to control subjects and patients without UL-N. UL-N correlated with the severity of LL-N, but not with duration of diabetes, glycemia, age, or sex. CONCLUSIONS: This study points to a substantial prevalence of UL-N in type 2 diabetes. The sensory phenotype of patients with UL-N was similar to LL-N and was characterized by loss of sensory function. Our study demonstrated an association of UL-N with impaired manual dexterity and reduced health-related QoL. Thus, upper limb sensorimotor functions should be assessed early in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Neuropatías Diabéticas/epidemiología , Mano , Fuerza de la Mano , Humanos , Rendimiento Físico Funcional , Calidad de Vida , Extremidad Superior
13.
J Clin Endocrinol Metab ; 107(8): 2167-2181, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35661214

RESUMEN

CONTEXT: Novel fasting interventions have gained scientific and public attention. Periodic fasting has emerged as a dietary modification promoting beneficial effects on metabolic syndrome. OBJECTIVE: Assess whether periodic fasting reduces albuminuria and activates nephropathy-driven pathways. DESIGN/PARTICIPANTS: Proof-of-concept study where individuals with type 2 diabetes (n = 40) and increased albumin-to-creatinine ratio (ACR) were randomly assigned to receive a monthly fasting-mimicking diet (FMD) or a Mediterranean diet for 6 months with 3-month follow-up. MAIN OUTCOMES MEASURES: Change in ACR was assessed by analysis of covariance adjusted for age, sex, weight loss, and baseline value. Prespecified subgroup analysis for patients with micro- vs macroalbuminuria at baseline was performed. Change in homeostatic model assessment for insulin resistance (HOMA-IR), circulating markers of dicarbonyl detoxification (methylglyoxal-derived hydroimidazolone 1, glyoxalase-1, and hydroxyacetone), DNA-damage/repair (phosphorylated histone H2AX), lipid oxidation (acylcarnitines), and senescence (soluble urokinase plasminogen activator receptor) were assessed as exploratory endpoints. RESULTS: FMD was well tolerated with 71% to 95% of the participants reporting no adverse effects. After 6 months, change in ACR was comparable between study groups [110.3 (99.2, 121.5) mg/g; P = 0.45]. FMD led to a reduction of ACR in patients with microalbuminuria levels at baseline [-30.3 (-35.7, -24.9) mg/g; P ≤ 0.05] but not in those with macroalbuminuria [434.0 (404.7, 463.4) mg/g; P = 0.23]. FMD reduced HOMA-IR [-3.8 (-5.6, -2.0); P ≤ 0.05] and soluble urokinase plasminogen activator receptor [-156.6 (-172.9, -140.4) pg/mL; P ≤ 0.05], while no change was observed in markers of dicarbonyl detoxification or DNA-damage/repair. Change in acylcarnitines was related to patient responsiveness to ACR improvement. At follow-up only HOMA-IR reduction [-1.9 (-3.7, -0.1), P ≤ 0.05]) was sustained. CONCLUSIONS: Improvement of microalbuminuria and of markers of insulin resistance, lipid oxidation, and senescence suggest the potential beneficial effects of periodic fasting in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Resistencia a la Insulina , Albuminuria/etiología , Biomarcadores , Creatinina , ADN/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Ayuno , Humanos , Lípidos , Receptores del Activador de Plasminógeno Tipo Uroquinasa
14.
Front Cardiovasc Med ; 9: 813215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350534

RESUMEN

Objective: Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results: Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1ß level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion: We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.

15.
Front Endocrinol (Lausanne) ; 12: 765201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899603

RESUMEN

Patients with diabetes are over-represented among the total cases reported with "idiopathic" pulmonary fibrosis (IPF). This raises the question, whether this is an association only or whether diabetes itself can cause pulmonary fibrosis. Recent studies in mouse models of type 1 and type 2 diabetes demonstrated that diabetes causes pulmonary fibrosis. Both types of diabetes trigger a cascade, starting with increased DNA damage, an impaired DNA repair, and leading to persistent DNA damage signaling. This response, in turn, induces senescence, a senescence-associated-secretory phenotype (SASP), marked by the release of pro-inflammatory cytokines and growth factors, finally resulting in fibrosis. Restoring DNA repair drives fibrosis into remission, thus proving causality. These data can be translated clinically to patients with type 2 diabetes, characterized by long-term diabetes and albuminuria. Hence there are several arguments, to substitute the term "idiopathic" pulmonary fibrosis (IPF) in patients with diabetes (and exclusion of other causes of lung diseases) by the term "diabetes-induced pulmonary fibrosis" (DiPF). However, future studies are required to establish this term and to study whether patients with diabetes respond to the established therapies similar to non-diabetic patients.


Asunto(s)
Complicaciones de la Diabetes/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Fibrosis Pulmonar/etiología , Animales , Daño del ADN/genética , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/genética , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Humanos , Fibrosis Pulmonar/sangre , Fibrosis Pulmonar/genética
16.
J Am Soc Nephrol ; 32(12): 3066-3079, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479965

RESUMEN

BACKGROUND: Maladaptive endoplasmic reticulum stress signaling in diabetic kidney disease (DKD) is linked to increased glomerular and tubular expression of the cell-death-promoting transcription factor C/EBP homologous protein (CHOP). Here, we determined whether locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) targeting CHOP ameliorate experimental DKD. METHODS: We determined the efficacy of CHOP-ASO in the early and late stages of experimental DKD (in 8- or 16-week-old db/db mice, respectively) alone or with an angiotensin-converting enzyme inhibitor (ACEi), after an in vivo dose-escalation study. We used renal functional parameters and morphologic analyses to assess the effect of CHOP-ASO and renal gene-expression profiling to identify differentially regulated genes and pathways. Several human CHOP-ASOs were tested in hyperglycemia-exposed human kidney cells. RESULTS: CHOP-ASOs efficiently reduced renal CHOP expression in diabetic mice and reduced markers of DKD at the early and late stages. Early combined intervention (CHOP-ASO and ACEi) efficiently prevented interstitial damage. At the later timepoint, the combined treatment reduced indices of both glomerular and tubular damage more efficiently than either intervention alone. CHOP-ASO affected a significantly larger number of genes and disease pathways, including reduced sodium-glucose transport protein 2 (Slc5a2) and PROM1 (CD133). Human CHOP-ASOs efficiently reduced glucose-induced CHOP and prevented death of human kidney cells in vitro . CONCLUSIONS: The ASO-based approach efficiently reduced renal CHOP expression in a diabetic mouse model, providing an additional benefit to an ACEi, particularly at later timepoints. These studies demonstrate that ASO-based therapies efficiently reduce maladaptive CHOP expression and ameliorate experimental DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Humanos , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Diabetes Mellitus Experimental/complicaciones , Glomérulos Renales , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Riñón , Oligonucleótidos Antisentido/farmacología
18.
STAR Protoc ; 2(3): 100700, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34401774

RESUMEN

With the advancement of laser-based microscopy tools, it is now possible to explore mechano-kinetic processes occurring inside the cell. Here, we describe the advanced protocol for studying the DNA repair kinetics in real time using the laser to induce the DNA damage. This protocol can be used for inducing, testing, and studying the repair mechanisms associated with DNA double-strand breaks, interstrand cross-link repair, and single-strand break repair. For complete details on the use and execution of this protocol, please refer to Kumar et al. (2017, 2020).


Asunto(s)
Fenómenos Biomecánicos/fisiología , Reparación del ADN/fisiología , Microscopía Confocal/métodos , ADN/genética , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Daño del ADN/genética , Reparación del ADN/genética , Cinética , Rayos Láser
19.
Adv Sci (Weinh) ; 8(18): e2100275, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34319011

RESUMEN

Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Hipoglucemiantes/uso terapéutico , Humanos
20.
Front Neurosci ; 15: 741494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140582

RESUMEN

BACKGROUND: Recent studies have found that troponin T parallels the structural and functional decay of peripheral nerves at the level of the lower limbs in patients with type 2 diabetes (T2D). The aim of this study was to determine whether this finding can also be reproduced at the level of the upper limbs. METHODS: Ten patients with fasting glucose levels >100 mg/dl (five with prediabetes and five with T2D) underwent magnetic resonance neurography of the right upper arm comprising T2-weighted and diffusion weighted sequences. The fractional anisotropy (FA), an indicator for the structural integrity of peripheral nerves, was calculated in an automated approach for the median, ulnar, and radial nerve. All participants underwent additional clinical, serological, and electrophysiological assessments. RESULTS: High sensitivity Troponin T (hsTNT) and HbA1c were negatively correlated with the average FA of the median, ulnar and radial nerve (r = -0.84; p = 0.002 and r = -0.68; p = 0.032). Both FA and hsTNT further showed correlations with items of the Michigan Hand Outcome Questionnaire (r = -0.76; p = 0.010 and r = 0.87; p = 0.001, respectively). A negative correlation was found for hsTNT and HbA1c with the total Purdue Pegboard Test Score (r = -0.87; p = 0.001 and r = -0.68; p = 0.031). CONCLUSION: This study is the first to find that hsTNT and HbA1c are associated with functional and structural parameters of the nerves at the level of the upper limbs in patients with impaired glucose tolerance and T2D. Our results support the hypothesis that hyperglycemia-related microangiopathy, represented by elevated hsTNT levels, is a contributor to nerve damage in diabetic polyneuropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA