Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Cancer Res ; 29(20): 4196-4208, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37556118

RESUMEN

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with low response rates to frontline PD-1 blockade. Natural killer (NK) cells are a promising cellular therapy for T cell therapy-refractory cancers, but are frequently dysfunctional in patients with HNSCC. Strategies are needed to enhance NK cell responses against HNSCC. We hypothesized that memory-like (ML) NK cell differentiation, tumor targeting with cetuximab, and engineering with an anti-EphA2 (Erythropoietin-producing hepatocellular receptor A2) chimeric antigen receptor (CAR) enhance NK cell responses against HNSCC. EXPERIMENTAL DESIGN: We generated ML NK and conventional (c)NK cells from healthy donors, then evaluated their ability to produce IFNγ, TNF, degranulate, and kill HNSCC cell lines and primary HNSCC cells, alone or in combination with cetuximab, in vitro and in vivo using xenograft models. ML and cNK cells were engineered to express anti-EphA2 CAR-CD8A-41BB-CD3z, and functional responses were assessed in vitro against HNSCC cell lines and primary HNSCC tumor cells. RESULTS: Human ML NK cells displayed enhanced IFNγ and TNF production and both short- and long-term killing of HNSCC cell lines and primary targets, compared with cNK cells. These enhanced responses were further improved by cetuximab. Compared with controls, ML NK cells expressing anti-EphA2 CAR had increased IFNγ and cytotoxicity in response to EphA2+ cell lines and primary HNSCC targets. CONCLUSIONS: These preclinical findings demonstrate that ML differentiation alone or coupled with either cetuximab-directed targeting or EphA2 CAR engineering were effective against HNSCCs and provide the rationale for investigating these combination approaches in early phase clinical trials for patients with HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptores Quiméricos de Antígenos , Humanos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Células Asesinas Naturales , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Anticuerpos Monoclonales/metabolismo , Diferenciación Celular
2.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37279078

RESUMEN

Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.


Asunto(s)
Inmunidad Innata , Proteínas de Dominio T Box , Humanos , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Células Asesinas Naturales/metabolismo , Factores de Transcripción/metabolismo , Citocinas/metabolismo
3.
Mol Ther Oncolytics ; 24: 585-596, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35284622

RESUMEN

Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.

4.
Sci Transl Med ; 14(633): eabm1375, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196021

RESUMEN

Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Inmunidad Innata , Interleucina-15 , Células Asesinas Naturales , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia
5.
Blood ; 139(11): 1670-1683, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871371

RESUMEN

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Niño , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Células Asesinas Naturales , Leucemia Mieloide Aguda/terapia , Trasplante Homólogo , Donante no Emparentado
6.
Cancer Immunol Res ; 9(9): 1071-1087, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244297

RESUMEN

Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.


Asunto(s)
Interleucina-12/farmacología , Interleucina-15/farmacología , Interleucina-18/farmacología , Células Asesinas Naturales/inmunología , Leucemia/terapia , Animales , Línea Celular Tumoral , Humanos , Memoria Inmunológica/efectos de los fármacos , Leucemia/inmunología , Ratones , Receptores de Células Asesinas Naturales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Inducción de Remisión , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33986022

RESUMEN

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoterapia , Células Asesinas Naturales , Leucemia , Linfoma , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Sangre/efectos de los fármacos , Sangre/inmunología , Células Cultivadas , Terapia Combinada , Citocinas/farmacología , Sangre Fetal/efectos de los fármacos , Sangre Fetal/inmunología , Inmunoterapia/métodos , Antígeno Ki-1/inmunología , Células Asesinas Naturales/inmunología , Leucemia/terapia , Linfoma/terapia , Receptores de IgG/inmunología
8.
Cancer Discov ; 10(12): 1854-1871, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32826231

RESUMEN

Natural killer (NK) cells are an emerging cancer cellular therapy and potent mediators of antitumor immunity. Cytokine-induced memory-like (ML) NK cellular therapy is safe and induces remissions in patients with acute myeloid leukemia (AML). However, the dynamic changes in phenotype that occur after NK-cell transfer that affect patient outcomes remain unclear. Here, we report comprehensive multidimensional correlates from ML NK cell-treated patients with AML using mass cytometry. These data identify a unique in vivo differentiated ML NK-cell phenotype distinct from conventional NK cells. Moreover, the inhibitory receptor NKG2A is a dominant, transcriptionally induced checkpoint important for ML, but not conventional NK-cell responses to cancer. The frequency of CD8α+ donor NK cells is negatively associated with AML patient outcomes after ML NK therapy. Thus, elucidating the multidimensional dynamics of donor ML NK cells in vivo revealed critical factors important for clinical response, and new avenues to enhance NK-cell therapeutics. SIGNIFICANCE: Mass cytometry reveals an in vivo memory-like NK-cell phenotype, where NKG2A is a dominant checkpoint, and CD8α is associated with treatment failure after ML NK-cell therapy. These findings identify multiple avenues for optimizing ML NK-cell immunotherapy for cancer and define mechanisms important for ML NK-cell function.This article is highlighted in the In This Issue feature, p. 1775.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/genética , Humanos , Leucemia Mieloide Aguda/patología
9.
Blood ; 136(20): 2308-2318, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32614951

RESUMEN

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12), IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions in patients with leukemia. However, many cancers are not fully recognized via NK cell receptors. Chimeric antigen receptors (CARs) have been used to enhance tumor-specific recognition by effector lymphocytes. We hypothesized that ML differentiation and CAR engineering would result in complementary improvements in NK cell responses against NK-resistant cancers. To test this idea, peripheral blood ML NK cells were modified to express an anti-CD19 CAR (19-CAR-ML), which displayed significantly increased interferon γ production, degranulation, and specific killing against NK-resistant lymphoma lines and primary targets compared with nonspecific control CAR-ML NK cells or conventional CAR NK cells. The 19-CAR and ML responses were synergistic and CAR specific and required immunoreceptor tyrosine-based activation motif signaling. Furthermore, 19-CAR-ML NK cells generated from lymphoma patients exhibited improved responses against their autologous lymphomas. 19-CAR-ML NK cells controlled lymphoma burden in vivo and improved survival in human xenograft models. Thus, CAR engineering of ML NK cells enhanced responses against resistant cancers and warrants further investigation, with the potential to broaden ML NK cell recognition against a variety of NK cell-resistant tumors.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Linfoma/inmunología , Receptores Quiméricos de Antígenos , Animales , Citotoxicidad Inmunológica/inmunología , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Rep ; 31(9): 107720, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492428

RESUMEN

Natural killer (NK) cells are cytotoxic innate lymphoid cells (ILCs) that mediate antiviral and antitumor responses and require the transcriptional regulator Eomesodermin (Eomes) for early development. However, the role of Eomes and its molecular program in mature NK cell biology is unclear. To address this, we develop a tamoxifen-inducible, type-1-ILC-specific (Ncr1-targeted) cre mouse and combine this with Eomes-floxed mice. Eomes deletion after normal NK cell ontogeny results in a rapid loss of NK cells (but not ILC1s), with a particularly profound effect on penultimately mature stage III NK cells. Mechanisms responsible for stage III reduction include increased apoptosis and impaired maturation from stage II precursors. Induced Eomes deletion also decreases NK cell cytotoxicity and abrogates in vivo rejection of major histocompatibility complex (MHC)-class-I-deficient cells. However, other NK cell functional responses, and stage IV NK cells, are largely preserved. These data indicate that mature NK cells have distinct Eomes-dependent and -independent stages.


Asunto(s)
Células Asesinas Naturales/inmunología , Proteínas de Dominio T Box/metabolismo , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Apoptosis , Puntos de Control del Ciclo Celular , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Receptores de Interleucina-15/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Bazo/citología , Bazo/inmunología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
11.
Immunity ; 51(3): 479-490.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31402259

RESUMEN

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-ß (TGF-ß) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.


Asunto(s)
Homeostasis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , MicroARNs/inmunología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Células 3T3 NIH , Receptores de Interleucina-15/inmunología , Transducción de Señal/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Factor de Crecimiento Transformador beta/inmunología
12.
Sci Transl Med ; 8(357): 357ra123, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27655849

RESUMEN

Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality. We demonstrated that human memory-like NK cells have enhanced interferon-γ production and cytotoxicity against leukemia cell lines or primary human AML blasts in vitro. Using mass cytometry, we found that memory-like NK cell functional responses were triggered against primary AML blasts, regardless of killer cell immunoglobulin-like receptor (KIR) to KIR-ligand interactions. In addition, multidimensional analyses identified distinct phenotypes of control and memory-like NK cells from the same individuals. Human memory-like NK cells xenografted into mice substantially reduced AML burden in vivo and improved overall survival. In the context of a first-in-human phase 1 clinical trial, adoptively transferred memory-like NK cells proliferated and expanded in AML patients and demonstrated robust responses against leukemia targets. Clinical responses were observed in five of nine evaluable patients, including four complete remissions. Thus, harnessing cytokine-induced memory-like NK cell responses represents a promising translational immunotherapy approach for patients with AML.


Asunto(s)
Citocinas/farmacología , Memoria Inmunológica/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Traslado Adoptivo , Anciano , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Ligandos , Masculino , Ratones , Persona de Mediana Edad , Receptores de Células Asesinas Naturales/metabolismo , Inducción de Remisión , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA