Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0294863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630672

RESUMEN

Diversity analysis using molecular markers serves as a powerful tool in unravelling the intricacies of inclusivity within various populations and is an initial step in the assessment of populations and the development of inbred lines for host plant resistance in maize. This study was conducted to assess the genetic diversity and population structure of 242 newly developed S3 inbred lines using 3,305 single nucleotide polymorphism (SNP) markers and to also assess the level of homozygosity achieved in each of the inbred lines. A total of 1,184 SNP markers were found highly informative, with a mean polymorphic information content (PIC) of 0.23. Gene diversity was high among the inbred lines, ranging from 0.04 to 0.50, with an average of 0.27. The residual heterozygosity of the 242 S3 inbred lines averaged 8.8%, indicating moderately low heterozygosity levels among the inbred lines. Eighty-four percent of the 58,322 pairwise kinship coefficients among the inbred lines were near zero (0.00-0.05), with only 0.3% of them above 0.50. These results revealed that many of the inbred lines were distantly related, but none were redundant, suggesting each inbred line had a unique genetic makeup with great potential to provide novel alleles for maize improvement. The admixture-based structure analysis, principal coordinate analysis, and neighbour-joining clustering were concordant in dividing the 242 inbred lines into three subgroups based on the pedigree and selection history of the inbred lines. These findings could guide the effective use of the newly developed inbred lines and their evaluation in quantitative genetics and molecular studies to identify candidate lines for breeding locally adapted fall armyworm tolerant varieties in Ghana and other countries in West and Central Africa.


Asunto(s)
Polimorfismo de Nucleótido Simple , Zea mays , Animales , Zea mays/genética , Spodoptera , Genotipo , Fitomejoramiento , Variación Genética
2.
Plants (Basel) ; 11(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631790

RESUMEN

Information on combining ability and heterotic patterns of multiple stress-tolerant inbred lines are fundamental prerequisites for devising appropriate breeding strategies for the development of climate-resilient maize hybrids. In the present study, we evaluated 150 single cross hybrids derived from the North Carolina Design II (NCD II) along with six commercial checks under terminal drought stress (TDS), heat stress (HS), and combined drought and heat stress (CHDS)conditions. The objectives of the study were to: (i) determine the combining ability of the inbred lines and identify the best testers across the stresses; (ii) classify the inbred lines into heterotic groups (HGs) based on the general combining ability of multiple traits (HGCAMT) and sequencing-based diversity array technology (DArTseq) and (iii) assess the performance and stability of the lines in hybrid combinations. The inbred lines showed significantly (p < 0.01 and p < 0.05) positive and negative general combining ability (GCA) and specific combining ability (SCA) effects for grain yield (GY) and most other measured traits. The inbred line TZEI 135 displayed relatively larger positive GCA effects for GY when mated either as male or female and was identified as the best tester. TZEI 135 × TZEI 182 was identified as the best single-cross tester across environments. Results of the assessment of the relative importance of GCA and SCA effects revealed the predominance of additive gene action over the non-additive. Six HGs of inbreds were identified using the HGCAMT and three, based on the DArTseq marker genetic distance method, were the most efficient. The best hybrids in this study significantly out-yielded the best checks by 21, 46, and 70% under CHDS, HS, and TDS, respectively. These hybrids should be extensively tested in on-farm trials for possible commercialization in sub-Saharan Africa.

3.
Genes (Basel) ; 11(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906687

RESUMEN

Genetic adaptation of maize to the increasingly unpredictable climatic conditions is an essential prerequisite for achievement of food security and sustainable development goals in sub-Saharan Africa. The landraces of maize; which have not served as sources of improved germplasm; are invaluable sources of novel genetic variability crucial for achieving this objective. The overall goal of this study was to assess the genetic diversity and population structure of a maize panel of 208 accessions; comprising landrace gene pools from Burkina Faso (58), Ghana (43), and Togo (89), together with reference populations (18) from the maize improvement program of the International Institute of Tropical Agriculture (IITA). Genotyping the maize panel with 5974 DArTseq-SNP markers revealed immense genetic diversity indicated by average expected heterozygosity (0.36), observed heterozygosity (0.5), and polymorphic information content (0.29). Model-based population structure; neighbor-joining tree; discriminant analysis of principal component; and principal coordinate analyses all separated the maize panel into three major sub-populations; each capable of providing a wide range of allelic variation. Analysis of molecular variance (AMOVA) showed that 86% of the variation was within individuals; while 14% was attributable to differences among gene pools. The Burkinabe gene pool was strongly differentiated from all the others (genetic differentiation values >0.20), with no gene flow (Nm) to the reference populations (Nm = 0.98). Thus; this gene pool could be a target for novel genetic variation for maize improvement. The results of the present study confirmed the potential of this maize panel as an invaluable genetic resource for future design of association mapping studies to speed-up the introgression of this novel variation into the existing breeding pipelines.


Asunto(s)
Adaptación Fisiológica , Flujo Génico , Mejoramiento Genético , Marcadores Genéticos , Variación Genética , Fitomejoramiento/métodos , Zea mays/genética , Genoma de Planta , Filogenia , Zea mays/clasificación
4.
Plants (Basel) ; 8(11)2019 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744251

RESUMEN

Climate change is expected to aggravate the effects of drought, heat and combined drought and heat stresses. An important step in developing 'climate smart' maize varieties is to identify germplasm with good levels of tolerance to the abiotic stresses. The primary objective of this study was to identify landraces with combined high yield potential and desirable secondary traits under drought, heat and combined drought and heat stresses. Thirty-three landraces from Burkina Faso (6), Ghana (6) and Togo (21), and three drought-tolerant populations/varieties from the Maize Improvement Program at the International Institute of Tropical Agriculture were evaluated under three conditions, namely managed drought stress, heat stress and combined drought and heat stress, with optimal growing conditions as control, for two years. The phenotypic and genetic correlations between grain yield of the different treatments were very weak, suggesting the presence of independent genetic control of yield to these stresses. However, grain yield under heat and combined drought and heat stresses were highly and positively correlated, indicating that heat-tolerant genotypes would most likely tolerate combined drought and stress. Yield reduction averaged 46% under managed drought stress, 55% under heat stress, and 66% under combined drought and heat stress, which reflected hypo-additive effect of drought and heat stress on grain yield of the maize accessions. Accession GH-3505 was highly tolerant to drought, while GH-4859 and TZm-1353 were tolerant to the three stresses. These landrace accessions can be invaluable sources of genes/alleles for breeding for adaptation of maize to climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA