Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Microbiol ; 24(11): 5467-5482, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35769014

RESUMEN

The soil surface of drylands can typically be colonized by cyanobacteria and other microbes, forming biological soil crusts or 'biocrusts'. Biocrusts provide critical benefits to ecosystems and are a common component of the largely arid and semi-arid Australian continent. Yet, their distribution and the parameters that shape their microbial composition have not been investigated. We present here the first detailed description of Australia's biocrust microbiome assessed from 15 sites across the continent using 16S rRNA sequencing. The most abundant bacterial phyla from all sites were Cyanobacteria, Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Cyanobacterial communities from northern regions were more diverse and unclassified cyanobacteria were a noticeable feature of northern biocrusts. Segregation between northern and southern regions was largely due to the differential abundance of Microcoleus spp., with M. paludosus dominating in the north and M. vaginatus dominating in the south. The geographical shifts in bacterial composition and diversity were correlated to seasonal temperatures and summer rainfall. Our findings provide an initial reference for sampling strategies to maximize access to bacterial genetic diversity. As hubs for essential ecosystem services, further investigation into biocrusts in arid and semi-arid regions may yield discoveries of genetic mechanisms that combat increases in warming due to climate change.


Asunto(s)
Cianobacterias , Microbiota , Suelo , Ecosistema , Microbiología del Suelo , ARN Ribosómico 16S/genética , Australia , Microbiota/genética , Cianobacterias/genética
2.
Geobiology ; 20(4): 546-559, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312212

RESUMEN

Microbialites are sedimentary rocks created in association with benthic microorganisms. While they harbour complex microbial communities, Cyanobacteria perform critical roles in sediment stabilisation and accretion. Microbialites have been described from permanent and ephemeral saline lakes in South Australia; however, the microbial communities that generate and inhabit these biogeological structures have not been studied in detail. To address this knowledge gap, we investigated the composition, diversity and metabolic potential of bacterial communities from different microbialite-forming mats and surrounding sediments in five South Australian saline coastal lakes using 16S rRNA gene sequencing and predictive metagenome analyses. While Proteobacteria and Bacteroidetes were the dominant phyla recovered from the mats and sediments, Cyanobacteria were significantly more abundant in the mat samples. Interestingly, at lower taxonomic levels, the mat communities were vastly different across the five lakes. Comparative analysis of putative mat and sediment metagenomes via PICRUSt2 revealed important metabolic pathways driving the process of carbonate precipitation, including cyanobacterial oxygenic photosynthesis, ureolysis and nitrogen fixation. These pathways were highly conserved across the five examined lakes, although they appeared to be performed by distinct groups of bacterial taxa found in each lake. Stress response, quorum sensing and circadian clock were other important pathways predicted by the in silico metagenome analysis. The enrichment of CRISPR/Cas and phage shock associated genes in these cyanobacteria-rich communities suggests that they may be under selective pressure from viral infection. Together, these results highlight that a very stable ecosystem function is maintained by distinctly different communities in microbialite-forming mats in the five South Australian lakes and reinforce the concept that 'who' is in the community is not as critical as their net metabolic capacity.


Asunto(s)
Cianobacterias , Microbiota , Australia , Cianobacterias/genética , Sedimentos Geológicos/química , Lagos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Australia del Sur
3.
BMC Res Notes ; 15(1): 49, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164843

RESUMEN

OBJECTIVE: Despite the move to at-home, small-volume collection kits to facilitate large population-based studies of faecal microbial compositional profiling, there remains limited reporting on potential impacts of faecal subsampling approaches on compositional profiles. This study aimed to compare the microbial composition from faecal subsamples (< 5 g) collected from the beginning and end of a single bowel movement in ten otherwise healthy adults (6 female, 4 male; age: 24-55 years). Microbial composition was determined by V3-V4 16s rRNA sequencing and compared between subsamples. RESULTS: There were no significant differences in OTU count (p = 0.32) or Shannon diversity index (p = 0.29) between the subsamples. Comparison of relative abundance for identified taxa revealed very few differences between subsamples. At the lower levels of taxonomic classification differences in abundance of the Bacillales (p = 0.02) and the Eubacteriaceae family (p = 0.03), and the Eubacterium genera (p = 0.03) were noted. The observation of consistent microbial compositional profiles between faecal subsamples from the beginning and end of a single bowel movement is an important outcome for study designs employing this approach to faecal sample collection. These findings provide assurance that use of a faecal subsample for microbial composition profiling is generally representative of the gut luminal contents more broadly.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Heces , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Adulto Joven
4.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33674429

RESUMEN

Bacterial vaginosis (BV) is the most common vaginal disorder of reproductive-aged women, yet its etiology remains enigmatic. One clinical symptom of BV, malodor, is linked to the microbial production of biogenic amines (BA). Using targeted liquid chromatography mass spectrometry, we analyzed 149 longitudinally collected vaginal samples to determine the in vivo concentrations of the most common BAs and then assessed their relationship to BV and effect upon the growth kinetics of axenically cultured vaginal Lactobacillus species. Increases in cadaverine, putrescine, and tyramine were associated with greater odds of women transitioning from L. crispatus-dominated vaginal microbiota to microbiota that have a paucity of Lactobacillus spp. and from Nugent scores of 0 to 3 to Nugent scores of 7 to 10, consistent with BV. Exposure to putrescine lengthened the lag time and/or slowed the growth of all vaginal Lactobacillus spp. except L. jensenii 62G. L. iners AB107's lag time was lengthened by cadaverine but reduced in the presence of spermidine and spermine. The growth rate of L. crispatus VPI 3199 was slowed by cadaverine and tyramine, and strain-specific responses to spermine and spermidine were observed. BAs were associated with reduced production of d- and l-lactic acid by vaginal Lactobacillus spp., and this effect was independent of their effect upon Lactobacillus species growth. The exceptions were higher levels of d- and l-lactic acid by two strains of L. crispatus when grown in the presence of spermine. Results of this study provide evidence of a direct impact of common biogenic amines on vaginal Lactobacillus spp.IMPORTANCELactobacillus spp. are credited with providing the primary defense against gynecological conditions, including BV, most notably through the acidification of the vaginal microenvironment, which results from their production of lactic acid. The microbial production of BAs has been hypothesized to play a mechanistic role in diminishing Lactobacillus species-mediated protection, enabling the colonization and outgrowth of diverse anaerobic bacterial species associated with BV. Here, we demonstrate that in vivo increases in the most commonly observed BAs are associated with a loss of Lactobacillus spp. and the development of BV, measured by Nugent score. Further, we show that BAs formed by amino acid decarboxylase enzymes negatively affect the growth of type strains of the most common vaginal Lactobacillus spp. and separately alter their production of lactic acid. These results suggest that BAs destabilize vaginal Lactobacillus spp. and play an important and direct role in diminishing their protection of the vaginal microenvironment.


Asunto(s)
Aminas Biogénicas/biosíntesis , Lactobacillus/metabolismo , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Ácido Láctico/biosíntesis , Lactobacillus/crecimiento & desarrollo , Vagina/microbiología
5.
BMC Microbiol ; 21(1): 20, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33421992

RESUMEN

BACKGROUND: The analysis of blow microbiota has been proposed as a biomarker for respiratory health analysis in cetaceans. Yet, we lack crucial knowledge on the long-term stability of the blow microbiota and its potential changes during disease. Research in humans and mice have provided evidence that respiratory disease is accompanied by a shift in microbial communities of the airways. We investigate here the stability of the community composition of the blow microbiota for 13 captive bottlenose dolphins over eight months including both sick and healthy individuals. We used barcoded tag sequencing of the bacterial 16S rRNA gene. Four of the dolphins experienced distinct medical conditions and received systemic antimicrobial treatment during the study. RESULTS: We showed that each dolphin harboured a unique community of zero-radius operational taxonomic units (zOTUs) that was present throughout the entire sampling period ('intra-core'). Although for most dolphins there was significant variation over time, overall the intra-core accounted for an average of 73% of relative abundance of the blow microbiota. In addition, the dolphins shared between 8 and 66 zOTUs on any of the sampling occasions ('inter-core'), accounting for a relative abundance between 17 and 41% of any dolphin's airway microbiota. The majority of the intra-core and all of the inter-core zOTUs in this study are commonly found in captive and free-ranging dolphins and have previously been reported from several different body sites. While we did not find a clear effect of microbial treatment on blow microbiota, age and sex of the dolphins did have such an effect. CONCLUSIONS: The airways of dolphins were colonized by an individual intra-core 'signature' that varied in abundance relative to more temporary bacteria. We speculate that the intra-core bacteria interact with the immune response of the respiratory tract and support its function. This study provides the first evidence of individual-specific airway microbiota in cetaceans that is stable over eight months.


Asunto(s)
Bacterias/clasificación , Delfín Mular/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Animales , Animales Salvajes/clasificación , Animales Salvajes/microbiología , Animales de Zoológico/clasificación , Animales de Zoológico/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Delfín Mular/clasificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Masculino , Filogenia , Sistema Respiratorio/microbiología , Manejo de Especímenes
6.
Glob Chang Biol ; 26(10): 5613-5629, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32715608

RESUMEN

Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change-driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k-strategist) signatures, to seasonally displace more copiotrophic (r-strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non-EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time-series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate-driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.


Asunto(s)
Prochlorococcus , Agua de Mar , Australia , Clorofila A , Océano Pacífico
7.
Sci Rep ; 10(1): 12645, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724137

RESUMEN

Humpback whales endure several months of fasting while undertaking one of the longest annual migrations of any mammal, which depletes the whales' energy stores and likely compromises their physiological state. Airway microbiota are linked to respiratory health in mammals. To illuminate the dynamics of airway microbiota in a physiologically challenged mammal, we investigated the bacterial communities in the blow of East Australian humpback whales at two stages of their migration: at the beginning (n = 20) and several months into their migration (n = 20), using barcoded tag sequencing of the bacterial 16S rRNA gene. We show that early in the fasting the whale blow samples had a higher diversity and richness combined with a larger number of core taxa and a different bacterial composition than later in the fasting. This study provides some evidence that the rich blow microbiota at the beginning of their fasting might reflect the whales' uncompromised physiology and that changes in the microbiota occur during the whales' migration.


Asunto(s)
Migración Animal , Bacterias/aislamiento & purificación , Biodiversidad , Ayuno , Yubarta/microbiología , Sistema Respiratorio/microbiología , Animales , Australia , Bacterias/clasificación , Bacterias/genética , Metabolismo Energético , Conducta Alimentaria , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Estaciones del Año
8.
PLoS Negl Trop Dis ; 14(4): e0008172, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251470

RESUMEN

Buruli ulcer (BU) is a subcutaneous necrotic infection of the skin caused by Mycobacterium ulcerans. It is the third most common human mycobacterial disease after tuberculosis (TB) and leprosy. The available methods for detection of the bacilli in lesions are microscopic detection, isolation and cultivation of the bacterium, histopathology, and polymerase chain reaction (PCR). These methods, although approved by the World Health Organization (WHO), have infrastructural and resource challenges in medical centres and cell-mediated immunity (CMI) and/or serology-based tests have been suggested as easier and more appropriate for accurate assessment of the disease, especially in remote or underdeveloped areas. This study systematically reviewed and conducted a meta-analysis for all research aimed at developing cell-mediated immunity (CMI) and/or serology-based tests for M. ulcerans disease. Information for this review was searched through PubMed and Web of Science databases and identified up to June 2019. References from relevant articles and reports from the WHO Annual Meeting of the Global Buruli Ulcer Initiative were also used. Twelve studies beginning in 1952, that attempted to develop CMI and/or serology-based tests for the disease were identified. These studies addressed issues of specificity and sensitivity in context of antigen composition as well as study heterogeneity and bias. The two main types of antigenic preparations considered were pathogen-derived and recombinant protein preparations. There was slight difference in test performance when M. ulcerans recombinant proteins [positivity: 67.5%; 32.5%] or pathogen-derived [positivity: 76.0%; 24.0%] preparations were used as test antigens among BU patients. However, pathogen-derived preparations were better at differentiating between patients and control groups [odds ratio (OR) of 27.92, 95%CI: 5.05-154.28]. This was followed by tests with the recombinant proteins [OR = 1.23, 95%CI: 0.27-5.62]. Overall, study heterogeneity index, I2 was 92.4% (p = 0.000). It is apparent from this review that standardisation is needed in any future CMI and/or serology-based tests used for M. ulcerans disease.


Asunto(s)
Úlcera de Buruli/diagnóstico , Mycobacterium ulcerans/aislamiento & purificación , Pruebas Serológicas/métodos , Úlcera de Buruli/microbiología , Úlcera de Buruli/patología , Bases de Datos Factuales , Humanos , Inmunidad Celular , Lepra , Reacción en Cadena de la Polimerasa
10.
Environ Microbiol Rep ; 12(3): 324-333, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162479

RESUMEN

The number of social contacts of mammals is positively correlated with the diversity of their gut microbes. There is some evidence that sociality also affects microbes in the respiratory tract. We tested whether the airway microbiota of cetacean species differ depending on the whales' level of sociality. We sampled the blow of blue (Balaenoptera musculus), grey (Eschrichtius robustus), humpback (Megaptera novaeangliae) and long-finned pilot whales (PWs) (Globicephala melas) and analysed the blow microbiota by barcode tag sequencing targeting the V4 region of the bacterial 16S rRNA gene. Humpback whales (HWs) show higher levels of sociality than blue (BW) and grey (GW), while PWs are the most gregarious among the four species. The blow samples of the HWs showed the highest richness and diversity. HWs were also the only species with a species-specific clustering of their microbial community composition and a relatively large number of core taxa. Therefore, we conclude that it cannot be sociality alone shaping the diversity and composition of airway microbiota. We suggest the whale species' lung volume and size of the plume of exhaled air as an additional factor impacting the transmission potential of blow microbiota from one individual whale to another.


Asunto(s)
Cetáceos/microbiología , Sistema Respiratorio/microbiología , Conducta Social , Animales , Balaenoptera/microbiología , Microbioma Gastrointestinal , Yubarta/microbiología , Ballenas/microbiología , Calderón/microbiología
11.
Mol Ecol Resour ; 20(4): 844-855, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31990452

RESUMEN

Noninvasive sampling methods for studying intestinal microbiomes are widely applied in studies of endangered species and in those conducting temporal monitoring during manipulative experiments. Although existing studies show that noninvasive sampling methods among different taxa vary in their accuracy, no studies have yet been published comparing nonlethal sampling methods in adult amphibians. In this study, we compare microbiomes from two noninvasive sample types (faeces and cloacal swabs) to that of the large intestine in adult cane toads, Rhinella marina. We use 16S rRNA gene sequencing to investigate how microbial communities change along the digestive tract and which nonlethal sampling method better represents large intestinal microbiota. We found that cane toads' intestinal microbiota was dominated by Bacteroidetes, Proteobacteria and Firmicutes and, interestingly, we also saw a high proportion of Fusobacteria, which has previously been associated with marine species and changes in frog immunity. The large and small intestine of cane toads had a similar microbial composition, but the large intestine showed higher diversity. Our results indicate that cloacal swabs were more similar to large intestine samples than were faecal samples, and small intestine samples were significantly different from both nonlethal sample types. Our study provides valuable information for future investigations of the cane toad gut microbiome and validates the use of cloacal swabs as a nonlethal method to study changes in the large intestine microbiome. These data provide insights for future studies requiring nonlethal sampling of amphibian gut microbiota.


Asunto(s)
Anfibios/microbiología , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/metabolismo , Microbiota/genética , Manejo de Especímenes/métodos , Animales , Especies en Peligro de Extinción , Heces/microbiología , Filogenia , ARN Ribosómico 16S/genética
12.
Biomedicines ; 9(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383810

RESUMEN

(1) Background: Individuals with diabetes and chronic kidney disease display gut dysbiosis when compared to healthy controls. However, it is unknown whether there is a change in dysbiosis across the stages of diabetic chronic kidney disease. We investigated a cross-sectional study of patients with early and late diabetes associated chronic kidney disease to identify possible microbial differences between these two groups and across each of the stages of diabetic chronic kidney disease. (2) Methods: This cross-sectional study recruited 95 adults. DNA extracted from collected stool samples were used for 16S rRNA sequencing to identify the bacterial community in the gut. (3) Results: The phylum Firmicutes was the most abundant and its mean relative abundance was similar in the early and late chronic kidney disease group, 45.99 ± 0.58% and 49.39 ± 0.55%, respectively. The mean relative abundance for family Bacteroidaceae, was also similar in the early and late group, 29.15 ± 2.02% and 29.16 ± 1.70%, respectively. The lower abundance of Prevotellaceae remained similar across both the early 3.87 ± 1.66% and late 3.36 ± 0.98% diabetic chronic kidney disease groups. (4) Conclusions: The data arising from our cohort of individuals with diabetes associated chronic kidney disease show a predominance of phyla Firmicutes and Bacteroidetes. The families Ruminococcaceae and Bacteroidaceae represent the highest abundance, while the beneficial Prevotellaceae family were reduced in abundance. The most interesting observation is that the relative abundance of these gut microbes does not change across the early and late stages of diabetic chronic kidney disease, suggesting that this is an early event in the development of diabetes associated chronic kidney disease. We hypothesise that the dysbiotic microbiome acquired during the early stages of diabetic chronic kidney disease remains relatively stable and is only one of many risk factors that influence progressive kidney dysfunction.

13.
Front Microbiol ; 11: 597944, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488543

RESUMEN

A wines' terroir, represented as wine traits with regional distinctiveness, is a reflection of both the biophysical and human-driven conditions in which the grapes were grown and wine made. Soil is an important factor contributing to the uniqueness of a wine produced by vines grown in specific conditions. Here, we evaluated the impact of environmental variables on the soil bacteria of 22 Barossa Valley vineyard sites based on the 16S rRNA gene hypervariable region 4. In this study, we report that both dispersal isolation by geographic distance and environmental heterogeneity (soil plant-available P content, elevation, rainfall, temperature, spacing between row and spacing between vine) contribute to microbial community dissimilarity between vineyards. Vineyards located in cooler and wetter regions showed lower beta diversity and a higher ratio of dominant taxa. Differences in soil bacterial community composition were significantly associated with differences in fruit and wine composition. Our results suggest that environmental factors affecting wine terroir, may be mediated by changes in microbial structure, thus providing a basic understanding of how growing conditions affect interactions between plants and their soil bacteria.

14.
Brain Behav Immun ; 82: 309-318, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493447

RESUMEN

An emerging novel therapeutic agent for major depressive disorder, minocycline, has the potential to influence both gut microbiome and inflammatory status. The present study showed that chronic high fat diet feeding led to changes in both behaviour and the gut microbiome in male mice, without an overt inflammatory response. The diet-induced behavioural changes were characterised as increased immobility in the forced swim test and changes in locomotor activities in the open field test. Minocycline significantly altered the gut microbiome, rendering a community distinctly different to both untreated healthy and diet-affected states. In contrast, minocycline did not reverse high fat diet-induced changes in behaviour.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Minociclina/farmacología , Animales , Ansiedad/metabolismo , Conducta Animal/fisiología , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Minociclina/metabolismo
15.
Sci Data ; 5: 180130, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015804

RESUMEN

Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences.


Asunto(s)
Archaea/genética , Bacterias/genética , Microbiota , Australia , Biodiversidad , Océanos y Mares , Análisis de Secuencia de ARN , Microbiología del Agua
16.
Sci Rep ; 8(1): 8686, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875375

RESUMEN

We present an optimised metagenomics method for detection and characterisation of all virus types including single and double stranded DNA/RNA and enveloped and non-enveloped viruses. Initial evaluation included both spiked and non-spiked bird faecal samples as well as non-spiked human faecal samples. From the non-spiked bird samples (Australian Muscovy duck and Pacific black ducks) we detected 21 viruses, and we also present a summary of a few viruses detected in human faecal samples. We then present a detailed analysis of selected virus sequences in the avian samples that were somewhat similar to known viruses, and had good quality (Q20 or higher) and quantity of next-generation sequencing reads, and was of interest from a virological point of view, for example, avian coronavirus and avian paramyxovirus 6. Some of these viruses were closely related to known viruses while others were more distantly related with 70% or less identity to currently known/sequenced viruses. Besides detecting viruses, the technique also allowed the characterisation of host mitochondrial DNA present and thus identifying host species, while ribosomal RNA sequences provided insight into the "ribosomal activity microbiome"; of gut parasites; and of food eaten such as plants or insects, which we correlated to non-avian host associated viruses.


Asunto(s)
Animales Salvajes/virología , Enfermedades de las Aves/virología , Aves/virología , Heces/virología , Metagenómica , Virus/genética , Virus/aislamiento & purificación , Animales , Australia , Evolución Molecular , Humanos , Metagenómica/métodos , Filogenia
17.
Sci Rep ; 8(1): 5980, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654248

RESUMEN

We evaluated the presence of coronaviruses by PCR in 918 Australian wild bird samples collected during 2016-17. Coronaviruses were detected in 141 samples (15.3%) from species of ducks, shorebirds and herons and from multiple sampling locations. Sequencing of selected positive samples found mainly gammacoronaviruses, but also some deltacoronaviruses. The detection rate of coronaviruses was improved by using multiple PCR assays, as no single assay could detect all coronavirus positive samples. Sequencing of the relatively conserved Orf1 PCR amplicons found that Australian duck gammacoronaviruses were similar to duck gammacoronaviruses around the world. Some sequenced shorebird gammacoronaviruses belonged to Charadriiformes lineages, but others were more closely related to duck gammacoronaviruses. Australian duck and heron deltacoronaviruses belonged to lineages with other duck and heron deltacoronaviruses, but were almost 20% different in nucleotide sequence to other deltacoronavirus sequences available. Deltacoronavirus sequences from shorebirds formed a lineage with a deltacoronavirus from a ruddy turnstone detected in the United States. Given that Australian duck gammacoronaviruses are highly similar to those found in other regions, and Australian ducks rarely come into contact with migratory Palearctic duck species, we hypothesise that migratory shorebirds are the important vector for moving wild bird coronaviruses into and out of Australia.


Asunto(s)
Animales Salvajes/virología , Aves/virología , Infecciones por Coronavirus/virología , Coronavirus/patogenicidad , Animales , Australia , Enfermedades de las Aves , Filogenia , Estados Unidos
18.
Sci Rep ; 7(1): 3861, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28634337

RESUMEN

We present the near complete virus genome sequences with phylogenetic and network analyses of potential transmission networks of a total of 18 Australian cases of human parechovirus type 3 (HPeV3) infection in infants in the period from 2012-2015. Overall the results support our previous finding that the Australian outbreak strain/lineage is a result of a major recombination event that took place between March 2012 and November 2013 followed by further virus evolution and possibly recombination. While the nonstructural coding region of unknown provenance appears to evolve significantly both at the nucleotide and amino acid level, the capsid encoding region derived from the Yamagata 2011 lineage of HPeV3 appears to be very stable, particularly at the amino acid level. The phylogenetic and network analyses performed support a temporal evolution from the first Australian recombinant virus sequence from November 2013 to March/April 2014, onto the 2015 outbreak. The 2015 outbreak samples fall into two separate clusters with a possible common ancestor between March/April 2014 and September 2015, with each cluster further evolving in the period from September to November/December 2015.


Asunto(s)
Evolución Molecular , Parechovirus/genética , Infecciones por Picornaviridae/virología , Recombinación Genética , Australia/epidemiología , Brotes de Enfermedades , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Parechovirus/clasificación , Filogenia , Infecciones por Picornaviridae/epidemiología , ARN Viral , Análisis de Secuencia de ADN
19.
Sci Rep ; 7: 44423, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28290509

RESUMEN

Human parechovirus types 1-16 (HPeV1-16) are positive strand RNA viruses in the family Picornaviridae. We investigated a 2015 outbreak of HPeV3 causing illness in infants in Victoria, Australia. Virus genome was extracted from clinical material and isolates and sequenced using a combination of next generation and Sanger sequencing. The HPeV3 outbreak genome was 98.7% similar to the HPeV3 Yamagata 2011 lineage for the region encoding the structural proteins up to nucleotide position 3115, but downstream of that the genome varied from known HPeV sequences with a similarity of 85% or less. Analysis indicated that recombination had occurred, may have involved multiple types of HPeV and that the recombination event/s occurred between March 2012 and November 2013. However the origin of the genome downstream of the recombination site is unknown. Overall, the capsid of this virus is highly conserved, but recombination provided a different non-structural protein coding region that may convey an evolutionary advantage. The indication that the capsid encoding region is highly conserved at the amino acid level may be helpful in directing energy towards the development of a preventive vaccine for expecting mothers or antibody treatment of young infants with severe disease.


Asunto(s)
Parechovirus/genética , Filogenia , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/genética , Australia/epidemiología , Proteínas de la Cápside/genética , Brotes de Enfermedades , Genoma Viral/genética , Genotipo , Humanos , Lactante , Sistemas de Lectura Abierta/genética , Parechovirus/aislamiento & purificación , Parechovirus/patogenicidad , Infecciones por Picornaviridae/patología , Infecciones por Picornaviridae/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ADN
20.
Front Physiol ; 6: 253, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483694

RESUMEN

Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a "fishy" odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA