Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Total Environ ; 949: 174995, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053527

RESUMEN

Wet grasslands, which are vital for water and nutrient regulation, are characterised by distinct water, carbon (C) and nitrogen (N) dynamics, and their interactions. Due to their shallow groundwater table, wet grasslands promote a strong interconnection between diverse vegetation and soil water. Researchers have investigated how wet grasslands respond to environmental changes, using various simulation models to understand how these sites contribute to water, C and N dynamics. However, a comprehensive, simultaneous study of all three of these dynamics is still lacking. This study makes use of a grassland lysimeter study with differently managed groundwater levels and employs the process-based MOdel for NItrogen and Carbon dynamics in Agroecosystems (MONICA) to simulate these dynamics. By using SPOTPY (Statistical Parameter Optimization Tool) to optimise the relevant parameters, we find that MONICA performs well in simulating vegetation growth (aboveground biomass), and elements of the water (evapotranspiration), C (gross primary productivity, ecosystem respiration) and N (N in aboveground biomass, nitrate in soil solution, Nitrous oxide emissions) balance, with Willmott's Refined Index of Agreement always larger than 0.35. This level of accuracy demonstrates that MONICA is ready to be applied for scenario simulations of groundwater management and climate change to evaluate their impact on greenhouse gas emissions and long-term carbon storage, as well as water and nitrogen losses in wet grasslands.

2.
J Environ Manage ; 366: 121595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991348

RESUMEN

Atmospheric heat has become a major public concern in a rapidly warming world. Evapotranspiration, however, provides effective land surface cooling during the vegetation period. Adversely, modern cultural landscapes - due to both water and potential evapotranspiration pathways lacking - are increasingly incapable of offering this important benefit. We hypothesised that concerted measures for a revived landscape water retention can fuel plant transpiration, especially during dry periods, and thus contribute to climate change adaptation by stabilising the regional climate. Seeking nature-based ways to an improved landscape water retention, we used the land surface temperature (LST) as a proxy for landscape mesoclimate. For our drought-prone rural study area, we identified potential candidate environmental predictors for which we established statistical relationships to LST. We then, from a set of potential climate change adaptation measures, mapped selected items to potential locations of implementation. Building on that, we evaluated a certain measures' probable cooling effect using (i) the fitted model and (ii) the expected expression of predictors before and after a hypothetical measure implementation. In the modelling, we took into account the spatial and temporal autocorrelation of the LST data and thus achieved realistic parameter estimates. Using the candidate predictor set and the model, we were able to establish a ranking of the effectiveness of climate adaptation measures. However, due to the spatial variability of the predictors, the modelled LST is site-specific. This results in a spatial differentiation of a measure's benefit. Furthermore, seasonal variations occur, such as those caused by plant growth. On average, the afforestation of arable land or urban brownfields, and the rewetting of former wet meadows have the largest cooling capacities of up to 3.5 K. We conclude that heat countermeasures based on fostering both evapotranspiration and landscape water retention, even in rural regions, offer promising adaptation ways to atmospheric warming.


Asunto(s)
Cambio Climático , Temperatura
3.
Nat Plants ; 10(7): 1081-1090, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38965400

RESUMEN

Increasing global food demand will require more food production1 without further exceeding the planetary boundaries2 while simultaneously adapting to climate change3. We used an ensemble of wheat simulation models with improved sink and source traits from the highest-yielding wheat genotypes4 to quantify potential yield gains and associated nitrogen requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The improved sink and source traits increased yield by 16% with current nitrogen fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential-a 52% increase in global average yield under a mid-century high warming climate scenario (RCP8.5), fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil nitrogen availability and nitrogen use efficiency, along with yield potential.


Asunto(s)
Cambio Climático , Fertilizantes , Nitrógeno , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Fertilizantes/análisis , Nitrógeno/metabolismo , Suelo/química
4.
Environ Sci Ecotechnol ; 16: 100274, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37206315

RESUMEN

Multifunctional and diversified agriculture can address diverging pressures and demands by simultaneously enhancing productivity, biodiversity, and the provision of ecosystem services. The use of digital technologies can support this by designing and managing resource-efficient and context-specific agricultural systems. We present the Digital Agricultural Knowledge and Information System (DAKIS) to demonstrate an approach that employs digital technologies to enable decision-making towards diversified and sustainable agriculture. To develop the DAKIS, we specified, together with stakeholders, requirements for a knowledge-based decision-support tool and reviewed the literature to identify limitations in the current generation of tools. The results of the review point towards recurring challenges regarding the consideration of ecosystem services and biodiversity, the capacity to foster communication and cooperation between farmers and other actors, and the ability to link multiple spatiotemporal scales and sustainability levels. To overcome these challenges, the DAKIS provides a digital platform to support farmers' decision-making on land use and management via an integrative spatiotemporally explicit approach that analyses a wide range of data from various sources. The approach integrates remote and in situ sensors, artificial intelligence, modelling, stakeholder-stated demand for biodiversity and ecosystem services, and participatory sustainability impact assessment to address the diverse drivers affecting agricultural land use and management design, including natural and agronomic factors, economic and policy considerations, and socio-cultural preferences and settings. Ultimately, the DAKIS embeds the consideration of ecosystem services, biodiversity, and sustainability into farmers' decision-making and enables learning and progress towards site-adapted small-scale multifunctional and diversified agriculture while simultaneously supporting farmers' objectives and societal demands.

5.
Glob Chang Biol ; 29(5): 1340-1358, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36524285

RESUMEN

The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.


Asunto(s)
Sequías , Glycine max , Glycine max/genética , Cambio Climático , Fitomejoramiento , Europa (Continente)
6.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35728801

RESUMEN

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Asunto(s)
Cambio Climático , Triticum , Biomasa , Estaciones del Año , Temperatura
7.
Sci Rep ; 12(1): 4049, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260727

RESUMEN

This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale.


Asunto(s)
Cambio Climático , Zea mays , Agricultura , España , Incertidumbre , Agua , Zea mays/fisiología
8.
Front Plant Sci ; 12: 621168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936124

RESUMEN

Pathogens and animal pests (P&A) are a major threat to global food security as they directly affect the quantity and quality of food. The Southern Amazon, Brazil's largest domestic region for soybean, maize and cotton production, is particularly vulnerable to the outbreak of P&A due to its (sub)tropical climate and intensive farming systems. However, little is known about the spatial distribution of P&A and the related yield losses. Machine learning approaches for the automated recognition of plant diseases can help to overcome this research gap. The main objectives of this study are to (1) evaluate the performance of Convolutional Neural Networks (ConvNets) in classifying P&A, (2) map the spatial distribution of P&A in the Southern Amazon, and (3) quantify perceived yield and economic losses for the main soybean and maize P&A. The objectives were addressed by making use of data collected with the smartphone application Plantix. The core of the app's functioning is the automated recognition of plant diseases via ConvNets. Data on expected yield losses were gathered through a short survey included in an "expert" version of the application, which was distributed among agronomists. Between 2016 and 2020, Plantix users collected approximately 78,000 georeferenced P&A images in the Southern Amazon. The study results indicate a high performance of the trained ConvNets in classifying 420 different crop-disease combinations. Spatial distribution maps and expert-based yield loss estimates indicate that maize rust, bacterial stalk rot and the fall armyworm are among the most severe maize P&A, whereas soybean is mainly affected by P&A like anthracnose, downy mildew, frogeye leaf spot, stink bugs and brown spot. Perceived soybean and maize yield losses amount to 12 and 16%, respectively, resulting in annual yield losses of approximately 3.75 million tonnes for each crop and economic losses of US$2 billion for both crops together. The high level of accuracy of the trained ConvNets, when paired with widespread use from following a citizen-science approach, results in a data source that will shed new light on yield loss estimates, e.g., for the analysis of yield gaps and the development of measures to minimise them.

9.
Glob Chang Biol ; 27(4): 904-928, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33159712

RESUMEN

Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.


Asunto(s)
Carbono , Suelo , Agricultura , Carbono/análisis , Francia , Federación de Rusia , Suecia , Incertidumbre , Reino Unido
10.
Glob Chang Biol ; 26(10): 5942-5964, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32628332

RESUMEN

Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO2 ], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi-arid Rwanda, hot subhumid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in-season soil water content from 2-year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2 ], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2 ]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low-input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.


Asunto(s)
Cambio Climático , Zea mays , Fertilizantes , Malí , Nitrógeno
11.
Glob Change Biol Bioenergy ; 12(1): 71-89, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32025242

RESUMEN

Crop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine-Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid-century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site-specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site-specific manner.

13.
Sci Rep ; 9(1): 5851, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971710

RESUMEN

Soils are an important source of nitrogen in many of the world's cropping systems. Especially in low-input production systems, nitrogen release from soil organic matter turn-over is the major part of the crop's nitrogen supply and research suggests that this process is significantly affected by changes in climate. The knowledge of the amount of nitrogen being accountable for crop nutrition is purely empirical in many production areas in the world and data as a foundation of global-scale climate change and food security assessments is scarce. Here we demonstrate that nitrogen mineralisation in general follows similar rules as for carbon, but with different implications for agricultural systems. We analysed 340 data sets from previously published incubation experiments for potential nitrogen mineralisation which covered a large range of soils and climate conditions. We find that under warm and all-year humid conditions the share of potentially mineralisable nitrogen in the soil's total nitrogen is significantly smaller than in dry or temperate environments. We conclude that - despite relatively high soil nitrogen stocks - soil-borne nitrogen supply for crop production is very low in tropical and humid subtropical environments, which is a critical piece of information for global assessments of agricultural production and food security.

14.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30549200

RESUMEN

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Proteínas de Granos/análisis , Triticum/química , Triticum/fisiología , Dióxido de Carbono/metabolismo , Sequías , Calidad de los Alimentos , Modelos Teóricos , Nitrógeno/metabolismo , Temperatura
15.
Glob Chang Biol ; 25(4): 1428-1444, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30536680

RESUMEN

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5°C scenario and -2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.

16.
Proc Natl Acad Sci U S A ; 116(1): 123-128, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30584094

RESUMEN

Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers' fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity "deserts" were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.


Asunto(s)
Clima , Triticum/fisiología , Producción de Cultivos/estadística & datos numéricos , Europa (Continente) , Abastecimiento de Alimentos , Fitomejoramiento , Análisis de Componente Principal , Lluvia , Temperatura , Tiempo (Meteorología)
17.
Nat Commun ; 9(1): 4249, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315168

RESUMEN

Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.


Asunto(s)
Sequías , Triticum/fisiología , Zea mays/fisiología , Cambio Climático , Europa (Continente) , Calor , Estaciones del Año
18.
Glob Chang Biol ; 24(11): 5072-5083, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30055118

RESUMEN

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.


Asunto(s)
Agricultura , Cambio Climático , Modelos Teóricos , Agricultura/métodos , Ambiente , Triticum
19.
Glob Chang Biol ; 24(3): 1291-1307, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29245185

RESUMEN

Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.


Asunto(s)
Cambio Climático , Productos Agrícolas/fisiología , Modelos Biológicos , Incertidumbre , Regiones Árticas , Productos Agrícolas/crecimiento & desarrollo , Finlandia , Predicción , Región Mediterránea , España , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA