Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690673

RESUMEN

Fat crystallization is one of the predominant factors influencing the structure and properties of fat-containing emulsions. In the present study, the role of emulsifiers on fat crystallization dynamics within droplet multiphase systems was evaluated via single-droplet analysis, taking advantage of the non-destructive properties of confocal Raman microscopy. Palm oil droplets dispersed in water were used as a model system, due to palm oil's well-known crystallization properties. Emulsion droplets of the same size were generated using two different emulsifiers (Whey Protein Isolate and Tween 60), at various concentrations. Fast and slow cooling treatments were applied to affect fat crystallisation and network formation as well as droplet morphology, and crystallization dynamics. Raman imaging analysis demonstrated that the chemical structure and concentration of the emulsifier significantly influenced both crystal nucleation within the droplets, as well as the spatial distribution and morphology of the fat crystal network. Additionally, analysis of the spectra of the crystallized phase provided essential information regarding the impact of the emulsifiers on the microstructure, degree of structural order, and structural arrangements of the fat crystal networks. Furthermore, by performing single droplet analysis during cooling it was possible to observe shape distortions in Tween 60 stabilized droplets, as a consequence of the formation of a three-dimensional network of fat crystals that strongly interacted with the interface. On the other hand, the droplets retained their shape when whey proteins were absorbed at the interface. Confocal Raman microscopy, in combination with polarized light microscopy, is, therefore, a well-suited tool for in situ, single-droplet analysis of emulsified oil systems, providing essential information about emulsified fat crystallization dynamics, contributing to better understanding and designing products with enhanced structure and function.

2.
Int J Biol Macromol ; 206: 371-380, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35240213

RESUMEN

The accumulation of rabbit muscle glycogen phosphorylase b (RMGPb) in electrostatic complexes with the cationic polyelectrolyte poly 2-(dimethylamino) ethyl methacrylate in its quenched form (QPDMAEMA) was studied in two buffer solutions. In the N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) buffer, large complexes of RMGPb-QPDMAEMA were formed which adopted smaller sizes as QPDMAEMA concentration increased. However, in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer, the hydrodynamic radius of the formed complexes gradually increased as the polymer concentration increased. Zeta potential measurements (ζp) showed that RMGPb significantly changed the ζp of the QPDMAEMA aggregates. Fluorescence studies showed that the interaction between RMGPb and QPDMAEAMA was enhanced as polymer concentration increased. Specifically, 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescence indicated that in the BES buffer the aggregates became denser as more QPDMAEMA was added, while in the HEPES buffer the density of the formed structures decreased. RMGPb's secondary structure was examined by Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) and Circular Dichroism (CD) showing that QPDMAEMA interaction with RMGPb does not induce any changes to the secondary structure of the enzyme. These observations suggest that cationic polyelectrolytes may be utilized for the formulation of RMGPb in multifunctional nanostructures and be further exploited in innovative biotechnology applications and bioinspired materials development.


Asunto(s)
Glucógeno Fosforilasa , Polímeros , Animales , Cationes , Glucógeno Fosforilasa/química , HEPES , Polielectrolitos , Polímeros/química , Conejos
3.
Org Biomol Chem ; 20(12): 2407-2423, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35119451

RESUMEN

Molecular rotors belong to a family of fluorescent compounds characterized as molecular switches, where a fluorescence on/off signal signifies a change in the molecule's microenvironment. Herein, the successful synthesis and detailed study of (E)-2-cyano-3-(p-(dimethylamino)phenyl)-N-(ß-D-glucopyranosyl)acrylamide (RotA), is reported. RotA was found to be a strong inhibitor of rabbit muscle glycogen phosphorylase (RMGPb), that binds at the catalytic site of the enzyme. RotA's interactions with the residues lining the catalytic site of RMGPb were determined by X-ray crystallography. Spectroscopic studies coupled with theoretical calculations proved that RotA is a molecular rotor. When bound in the catalytic channel of RMGPb, it behaved as a light switch, generating a strong fluorescence signal, allowing utilization of RotA as a probe that locates glycogen phosphorylase (GP). RotA, mono-, di- and per-acetylated derivatives, as well as nanoparticles with RotA encapsulated in polyethylene glycol-poly-L-histidine, were used in live cell fluorescence microscopy imaging to test the delivery of RotA through the plasma membrane of HepG2 and A431 cells, with the nanoparticles providing the best results. Once in the intracellular milieu, RotA exhibits remarkable colocalization with GP and significant biological effects, both in cell growth and inhibition of GP.


Asunto(s)
Inhibidores Enzimáticos , Glucosa , Sondas Moleculares , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Glucosa/análisis , Glucógeno Fosforilasa/antagonistas & inhibidores , Cinética , Sondas Moleculares/química , Oligosacáridos , Conejos
4.
Molecules ; 25(22)2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266408

RESUMEN

Dysregulation of glycogen phosphorylase, an enzyme involved in glucose homeostasis, may lead to a number of pathological states such as type 2 diabetes and cancer, making it an important molecular target for the development of new forms of pharmaceutical intervention. Based on our previous work on the design and synthesis of 4-arylamino-1-(ß-d-glucopyranosyl)pyrimidin-2-ones, which inhibit the activity of glycogen phosphorylase by binding at its catalytic site, we report herein a general synthesis of 2-substituted-5-(ß-d-glucopyranosyl)pyrimidin-4-ones, a related class of metabolically stable, C-glucosyl-based, analogues. The synthetic development consists of a metallated heterocycle, produced from 5-bromo-2-methylthiouracil, in addition to protected d-gluconolactone, followed by organosilane reduction. The methylthio handle allowed derivatization through hydrolysis, ammonolysis and arylamine substitution, and the new compounds were found to be potent (µM) inhibitors of rabbit muscle glycogen phosphorylase. The results were interpreted with the help of density functional theory calculations and conformational analysis and were compared with previous findings.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Glucógeno Fosforilasa de Forma Muscular/antagonistas & inhibidores , Pirimidinonas/química , Pirimidinonas/síntesis química , Animales , Dominio Catalítico , Biología Computacional , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glucosa/química , Glucógeno Fosforilasa de Forma Muscular/química , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Músculo Esquelético/enzimología , Pirimidinonas/farmacología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA