Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Metabolites ; 13(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110210

RESUMEN

Zucker fatty (fa/fa) rats represent a well-established and widely used model of genetic obesity. Because previous metabolomic studies have only been published for young fa/fa rats up to 20 weeks of age, which can be considered early maturity in male fa/fa rats, the aim of our work was to extend the metabolomic characterization to significantly older animals. Therefore, the urinary profiles of obese fa/fa rats and their lean controls were monitored using untargeted NMR metabolomics between 12 and 40 weeks of age. At the end of the experiment, the rats were also characterized by NMR and LC-MS serum analysis, which was supplemented by a targeted LC-MS analysis of serum bile acids and neurotransmitters. The urine analysis showed that most of the characteristic differences detected in young obese fa/fa rats persisted throughout the experiment, primarily through a decrease in microbial co-metabolite levels, the upregulation of the citrate cycle, and changes in nicotinamide metabolism compared with the age-related controls. The serum of 40-week-old obese rats showed a reduction in several bile acid conjugates and an increase in serotonin. Our study demonstrated that the fa/fa model of genetic obesity is stable up to 40 weeks of age and is therefore suitable for long-term experiments.

2.
Neuropeptides ; 98: 102319, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36669365

RESUMEN

Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that attenuates food intake and increases energy expenditure. We designed three series of new lipidized PrRP31 analogs of different lengths of fatty acids attached at amino acids 1 or 11 directly or via linkers, part of them acetylated at the N-terminus and/or modified with dichlorophenylalanine (PheCl2) at the C-terminus. We tested their affinity for and activation of signaling pathways relevant to receptors GPR10, NPFF-R2, and NPFF-R1, effect on food intake in fasted or freely fed mice and rats, and stability in rat plasma. We aimed to select a strong dual GPR10/NPFF-R2 agonist whose affinity for NPFF-1 was not enhanced. The selected potent analog was then tested for body weight-lowering potency after chronic administration in mice with diet-induced obesity. PrRP31 analogs lipidized by monocarboxylic fatty acids showed strong dual affinity for both GPR10 and NPFF-R2 and activated MAPK/ERK1/2, Akt and CREB in cells overexpressing GPR10 and NPFF-R2. The selected analog stabilized at N- and C-termini and palmitoylated through the TTDS linker to Lys11 is a powerful dual agonist GPR10/NPFF-R2 at not enhanced affinity for NPFF-R1. It showed strong anti-obesity properties in mice with diet-induced obesity and became a potential compound for further studies.


Asunto(s)
Neuropéptidos , Obesidad , Ratas , Ratones , Animales , Hormona Liberadora de Prolactina/metabolismo , Hormona Liberadora de Prolactina/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta , Ácidos Grasos
3.
Aging (Albany NY) ; 14(18): 7300-7327, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36126192

RESUMEN

The most important risk factor for the development of sporadic Alzheimer's disease (AD) is ageing. Senescence accelerated mouse prone 8 (SAMP8) is a model of sporadic AD, with senescence accelerated resistant mouse (SAMR1) as a control. In this study, we aimed to determine the onset of senescence-induced neurodegeneration and the related potential therapeutic window using behavioral experiments, immunohistochemistry and western blotting in SAMP8 and SAMR1 mice at 3, 6 and 9 months of age. The Y-maze revealed significantly impaired working spatial memory of SAMP8 mice from the 6th month. With ageing, increasing plasma concentrations of proinflammatory cytokines in SAMP8 mice were detected as well as significantly increased astrocytosis in the cortex and microgliosis in the brainstem. Moreover, from the 3rd month, SAMP8 mice displayed a decreased number of neurons and neurogenesis in the hippocampus. From the 6th month, increased pathological phosphorylation of tau protein at Thr231 and Ser214 was observed in the hippocampi of SAMP8 mice. In conclusion, changes specific for neurodegenerative processes were observed between the 3rd and 6th month of age in SAMP8 mice; thus, potential neuroprotective interventions could be applied between these ages.


Asunto(s)
Hipocampo , Proteínas tau , Envejecimiento/fisiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Nutr Diabetes ; 12(1): 26, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589696

RESUMEN

BACKGROUND/OBJECTIVE: Anorexigenic palmitoylated prolactin-releasing peptide (palm11-PrRP) is able to act centrally after peripheral administration in rat and mouse models of obesity, type 2 diabetes mellitus and/or neurodegeneration. Functional leptin and intact leptin signaling pathways are necessary for the body weight reducing and glucose tolerance improving effect of palm11-PrRP. We have previously shown that palm11-PrRP31 had glucose-lowering properties but not anti-obesity effect in Koletsky rats with leptin signaling disturbances, so improvements in glucose metabolism appear to be completely independent of leptin signaling. The purpose of this study was to describe relationship between metabolic and neurodegenerative pathologies and explore if palm11-PrRP31 could ameliorate them in obese fa/fa rat model with leptin signaling disruption. SUBJECT/METHODS: The fa/fa rats and their age-matched lean controls at the age 32 weeks were used for this study. The rats were infused for 2 months with saline or palm11-PrRP31 (n = 7-8 per group) at a dose of 5 mg/kg per day using Alzet osmotic pumps. During the dosing period food intake and body weight were monitored. At the end of experiment the oral glucose tolerance test was performed; plasma and tissue samples were collected and arterial blood pressure was measured. Then, markers of leptin and insulin signaling, Tau phosphorylation, neuroinflammation, and synaptogenesis were measured by western blotting and immunohistochemistry. RESULTS: Fa/fa rats developed obesity, mild glucose intolerance, and peripheral insulin resistance but not hypertension while palm11-PrRP31 treatment neither lowered body weight nor attenuated glucose tolerance but ameliorated leptin and insulin signaling and synaptogenesis in hippocampus. CONCLUSION: We demonstrated that palm11-PrRP31 had neuroprotective features without anti-obesity and glucose lowering effects in fa/fa rats. This data suggest that this analog has the potential to exert neuroprotective effect despite of leptin signaling disturbances in this rat model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Leptina , Animales , Peso Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Insulina/uso terapéutico , Ratones , Obesidad/metabolismo , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/uso terapéutico , Ratas
5.
Front Pharmacol ; 12: 779962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867411

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.

6.
Gene ; 774: 145427, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33450349

RESUMEN

G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females. Indirect calorimetry did not reveal any differences in energy expenditure among groups. In conclusion, deletion of GPR10 gene resulted in changes in lipid metabolism in mice of both sexes, however in different extent. An increase in adipose tissue mass observed in only GPR10 KO males may have been prevented in GPR10 KO females owing to a compensatory increase in the expression of metabolic genes.


Asunto(s)
Homeostasis/genética , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Receptores Acoplados a Proteínas G/genética , Animales , Metabolismo Energético/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Hormona Liberadora de Prolactina/metabolismo
7.
J Mol Endocrinol ; 64(2): 77-90, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31855558

RESUMEN

Lack of leptin production in ob/ob mice results in obesity and prediabetes that could be partly reversed by leptin supplementation. In the hypothalamus, leptin supports the production of prolactin-releasing peptide (PrRP), an anorexigenic neuropeptide synthesized and active in the brain. In our recent studies, the palmitoylated PrRP analog palm11-PrRP31 showed a central anorexigenic effect after peripheral administration. This study investigates whether PrRP could compensate for the deficient leptin in ob/ob mice. In two separate experiments, palm11-PrRP31 (5 mg/kg) and leptin (5 or 10 µg/kg) were administered subcutaneously twice daily for 2 or 8 weeks to 8- (younger) or 16-(older) week-old ob/ob mice, respectively, either separately or in combination. The body weight decreasing effect of palm11-PrRP31 in both younger and older ob/ob mice was significantly powered by a subthreshold leptin dose, the combined effect could be then considered synergistic. Leptin and palm11-PrRP31 also synergistically lowered liver weight and blood glucose in younger ob/ob mice. Reduced liver weight was linked to decreased mRNA expression of lipogenic enzymes. In the hypothalamus of older ob/ob mice, two main leptin anorexigenic signaling pathways, namely, Janus kinase, signal transducer and activator of transcription-3 activation and AMP-activated protein kinase de-activation, were induced by leptin, palm11-PrRP31, and their combination. Thus, palm11-PrRP31 could partially compensate for leptin deficiency in ob/ob mice. In conclusion, the results demonstrate a synergistic effect of leptin and our lipidized palm11-PrRP31 analog.


Asunto(s)
Leptina/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Hormona Liberadora de Prolactina/análogos & derivados , Hormona Liberadora de Prolactina/farmacología , Animales , Temperatura Corporal , Peso Corporal/efectos de los fármacos , Sinergismo Farmacológico , Ingestión de Alimentos/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Leptina/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hormona Liberadora de Prolactina/química , Hormona Liberadora de Prolactina/uso terapéutico
8.
J Nutr Biochem ; 68: 42-50, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31030166

RESUMEN

High fructose intake from soft drinks and sweets is assumed to have a negative impact on human health. Yet in spite of intensive research, the molecular mechanisms of these effects have not been fully elucidated yet, for example, the effect of high fructose intake could be different in normal and obese individuals. Four groups of mice were used in this study: control groups of lean mice and mice with obesity induced by a high-fat diet, then both of these groups with or without fructose administration in drinks. In plasma of each group, triacylglycerol, cholesterol, free fatty acids, alanine aminotransferase, insulin and adiponectin were measured. The expression levels of selected microRNAs (miRNAs) in plasma, the liver, white adipose tissue, brown adipose tissue and subcutaneous adipose tissue were quantified. In both lean and obese mice, high fructose intake increased cholesterol amount in the liver, up-regulated hepatic miR-27a, down-regulated miR-33a in white adipose tissue and increased plasmatic level of miR-21. The effect of high fructose intake on other miRNAs in the liver, plasma and adipose tissues differed in normal and obese mice. Fructose intake led to hepatic hypercholesterolemia and aberrant expression of several miRNAs participating in lipid metabolism, adipocytes differentiation and nonalcoholic fatty liver disease promotion. The effect of fructose on miRNAs expression differed in normal and obese mice. Nevertheless, plasmatic miR-21, which was induced by fructose in both lean and obese mice, may be considered as a potential biomarker of excessive fructose intake.


Asunto(s)
Fructosa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/efectos de los fármacos , Obesidad/genética , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/fisiología , Masculino , Ratones Endogámicos C57BL , MicroARNs/sangre , Obesidad/metabolismo
9.
J Proteome Res ; 18(4): 1735-1750, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30810318

RESUMEN

In this study, the combination of metabolomics and standard biochemical and biometric parameters was used to describe the metabolic effects of diet-induced obesity and its treatment with the novel antiobesity compound palm11-PrRP31 (palmitoylated prolactin-releasing peptide) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). The results showed that SHR on a high-fat (HF) diet were normoglycemic with obesity and hypertension, while WKY on the HF diet were normotensive and obese with prediabetes. NMR-based metabolomics revealed mainly several microbial cometabolites altered by the HF diet, particularly in urine. The HF diet induced similar changes in both models. However, two groups of genotype-specific metabolites were defined: metabolites specific to the genotype at baseline (e.g., 1-methylnicotinamide, phenylacetylglycine, taurine, methylamine) and metabolites reacting specifically to the HF diet in individual genotypes (2-oxoglutarate, dimethylamine, N-butyrylglycine, p-cresyl sulfate). The palm11-PrRP31 lowered body weight and improved biochemical and biometric parameters in both strains, and it improved glucose tolerance in WKY rats on the HF diet. In urine, the therapy induced significant decrease of formate and 1-methylnicotinamide in SHR and alanine, allantoin, dimethylamine, and N-butyrylglycine in WKY. Altogether, our study confirms the effectiveness of palm11-PrRP31 for antiobesity treatment.


Asunto(s)
Fármacos Antiobesidad/farmacología , Metaboloma/efectos de los fármacos , Obesidad/metabolismo , Hormona Liberadora de Prolactina/farmacología , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Espectroscopía de Resonancia Magnética , Metabolómica , Ratas , Ratas Endogámicas SHR
10.
J Alzheimers Dis ; 62(4): 1725-1736, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614684

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM) were characterized as risk factors for Alzheimer's disease (AD) development. Subsequently, T2DM drugs, such as liraglutide, were proven to be neuroprotective compounds attenuating levels of amyloid deposits, and tau hyperphosphorylation, both hallmarks of AD. The central anorexigenic effects of liraglutide inspired us to examine the potential neuroprotective effects of palm11-PrRP31, a strong anorexigenic analog with glucose-lowering properties, in THY-Tau22 mice overexpressing mutated human tau, a model of AD-like tau pathology. Seven-month-old THY-Tau22 mice were subcutaneously infused with palm11-PrRP31 for 2 months. Spatial memory was tested before and after the treatment, using a Y-maze. At the end of the treatment, mice were sacrificed by decapitation and hippocampi were dissected and analyzed by immunoblotting with specific antibodies. Treatment with palm11-PrRP31 resulted in significantly improved spatial memory. In the hippocampi of palm11-PrRP31-treated THY-Tau22 mice, tau protein phosphorylation was attenuated at Thr231, Ser396, and Ser404, the epitopes linked to AD progression. The mechanism of this attenuation remains unclear, since the activation of those kinases most implicated in tau hyperphosphorylation, such as GSK-3ß, JNK, or MAPK/ERK1/2, remained unchanged by palm11-PrRP31 treatment. Furthermore, we observed a significant increase in the amount of postsynaptic density protein PSD95, and a non-significant increase of synaptophysin, both markers of increased synaptic plasticity, which could also result in improved spatial memory of THY-Tau22 mice treated with palm11-PrRP31. Palm11-PrRP31 seems to be a potential tool for the attenuation of neurodegenerative disorders in the brain. However, the exact mechanism of its action must be elucidated.


Asunto(s)
Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Hormona Liberadora de Prolactina/análogos & derivados , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/uso terapéutico , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/psicología
11.
J Mol Endocrinol ; 60(2): 85-94, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29233862

RESUMEN

The situation following anti-obesity drug termination is rarely investigated, eventhough a decrease in body weight needs to be sustained. Therefore, this study examined the impact of twice-daily peripheral administration of 5 mg/kg [N-palm-γGlu-Lys11] prolactin-releasing peptide 31 (palm11-PrRP31) in mice with diet-induced obesity (DIO from consuming a high-fat diet) after 28 days of treatment (palm11-PrRP31 group) and after 14 days of peptide treatment followed by 14 days of discontinuation (palm11-PrRP31 + saline group). At the end of the treatment, cumulative food intake, body weight and subcutaneous fat weight/body weight ratio and leptin plasma level were reduced significantly in both the palm11-PrRP31 group and the palm11-PrRP31 + saline group compared to the saline control group. This reduction correlated with significantly increased FOSB, a marker of long-term neuronal potentiation, in the nucleus arcuatus and nucleus tractus solitarii, areas known to be affected by the anorexigenic effect of palm11-PrRP31. Moreover, activation of leptin-related hypothalamic signaling was registered through an increase in phosphoinositide-3-kinase, increased phosphorylation of protein kinase B (PKB, AKT) and enhanced extracellular signal-regulated kinase 1/2 phosphorylation. Besides, lowered apoptotic markers c-JUN N-terminal kinase and c-JUN phosphorylation were registered in the hypothalami of both palm11-PrRP31-treated groups. This study demonstrates that palm11-PrRP31 positively affects feeding and leptin-related hypothalamic signaling, not only after 28 days of treatment but even 14 days after the termination of a 14-day long treatment without the yo-yo effect.


Asunto(s)
Hipotálamo/metabolismo , Leptina/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Transducción de Señal , Animales , Apoptosis , Ingestión de Alimentos , Ayuno/sangre , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Neuronas/metabolismo , Tamaño de los Órganos , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Leptina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA