Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Mol Neurosci ; 15: 914830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157078

RESUMEN

Micro-RNAs (miRNAs) are short (∼21 nt) non-coding RNAs that regulate gene expression through the degradation or translational repression of mRNAs. Accumulating evidence points to a role of miRNA regulation in the pathogenesis of a wide range of neurodegenerative (ND) diseases such as, for example, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease (HD). Several systems level studies aimed to explore the role of miRNA regulation in NDs, but these studies remain challenging. Part of the problem may be related to the lack of sufficiently rich or homogeneous data, such as time series or cell-type-specific data obtained in model systems or human biosamples, to account for context dependency. Part of the problem may also be related to the methodological challenges associated with the accurate system-level modeling of miRNA and mRNA data. Here, we critically review the main families of machine learning methods used to analyze expression data, highlighting the added value of using shape-analysis concepts as a solution for precisely modeling highly dimensional miRNA and mRNA data such as the ones obtained in the study of the HD process, and elaborating on the potential of these concepts and methods for modeling complex omics data.

2.
Antioxidants (Basel) ; 11(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35624894

RESUMEN

The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.

3.
ACS Sens ; 7(6): 1657-1665, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35446554

RESUMEN

Extracellular vesicles (EVs) are secreted nanoparticles that are involved in intercellular communication and that modulate a wide range of biological processes in normal and disease conditions. However, EVs are highly heterogeneous in terms of origin in the cell, size, and density. As a result, complex protocols are required to identify and characterize specific EV subpopulations, limiting biomedical applications, notably in diagnostics. Here, we show that combining quartz crystal microbalance with dissipation (QCM-D) and nanoplasmonic sensing (NPS) provides a facile method to track the viscoelastic properties of small EVs. We applied this multisensing strategy to analyze small EVs isolated by differential ultracentrifugation from knock-in mouse striatal cells expressing either a mutated allele or wild-type allele of huntingtin (Htt), the Huntington's disease gene. Our results validate the sensing strategy coupling QCM-D and NPS and suggest that the mass and viscoelastic dissipation of EVs can serve as potent biomarkers for sensing the intercellular changes associated with the neurodegenerative condition.


Asunto(s)
Vesículas Extracelulares , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neurodegenerativas/diagnóstico , Cuarzo/química , Tecnicas de Microbalanza del Cristal de Cuarzo
4.
Elife ; 102021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33618800

RESUMEN

Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington's disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mutación , Proteostasis , Animales , Modelos Animales de Enfermedad , Femenino , Proteína Huntingtina/metabolismo , Masculino , Ratones
5.
Plant J ; 105(6): 1665-1676, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33346910

RESUMEN

Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.


Asunto(s)
Cromosomas de las Plantas/genética , Secale/genética , Triticum/genética , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Intercambio Genético/genética , Fitomejoramiento
6.
Aging Cell ; 19(11): e13226, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33156570

RESUMEN

Neurodegenerative diseases (ND) have been linked to the critical process in aging-cellular senescence. However, the temporal dynamics of cellular senescence in ND conditions is unresolved. Here, we show senescence features develop in human Huntington's disease (HD) neural stem cells (NSCs) and medium spiny neurons (MSNs), including the increase of p16INK4a , a key inducer of cellular senescence. We found that HD NSCs reprogram the transcriptional targets of FOXO3, a major cell survival factor able to repress cell senescence, antagonizing p16INK4a expression via the FOXO3 repression of the transcriptional modulator ETS2. Additionally, p16INK4a promotes cellular senescence features in human HD NSCs and MSNs. These findings suggest that cellular senescence may develop during neuronal differentiation in HD and that the FOXO3-ETS2-p16INK4a axis may be part of molecular responses aimed at mitigating this phenomenon. Our studies identify neuronal differentiation with accelerated aging of neural progenitors and neurons as an alteration that could be linked to NDs.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteína Forkhead Box O3/metabolismo , Enfermedad de Huntington/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Humanos , Enfermedad de Huntington/patología , Células-Madre Neurales/patología , Neuronas/patología
7.
BMC Bioinformatics ; 21(1): 75, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093602

RESUMEN

BACKGROUND: MicroRNA (miRNA) regulation is associated with several diseases, including neurodegenerative diseases. Several approaches can be used for modeling miRNA regulation. However, their precision may be limited for analyzing multidimensional data. Here, we addressed this question by integrating shape analysis and feature selection into miRAMINT, a methodology that we used for analyzing multidimensional RNA-seq and proteomic data from a knock-in mouse model (Hdh mice) of Huntington's disease (HD), a disease caused by CAG repeat expansion in huntingtin (htt). This dataset covers 6 CAG repeat alleles and 3 age points in the striatum and cortex of Hdh mice. RESULTS: Remarkably, compared to previous analyzes of this multidimensional dataset, the miRAMINT approach retained only 31 explanatory striatal miRNA-mRNA pairs that are precisely associated with the shape of CAG repeat dependence over time, among which 5 pairs with a strong change of target expression levels. Several of these pairs were previously associated with neuronal homeostasis or HD pathogenesis, or both. Such miRNA-mRNA pairs were not detected in cortex. CONCLUSIONS: These data suggest that miRNA regulation has a limited global role in HD while providing accurately-selected miRNA-target pairs to study how the brain may compute molecular responses to HD over time. These data also provide a methodological framework for researchers to explore how shape analysis can enhance multidimensional data analytics in biology and disease.


Asunto(s)
Enfermedad de Huntington/genética , Aprendizaje Automático , MicroARNs/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Ratones , Neuronas/metabolismo , Proteómica , ARN Mensajero/metabolismo , RNA-Seq , Repeticiones de Trinucleótidos
8.
Bioinformatics ; 36(1): 186-196, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31228193

RESUMEN

MOTIVATION: Huntington's disease (HD) may evolve through gene deregulation. However, the impact of gene deregulation on the dynamics of genetic cooperativity in HD remains poorly understood. Here, we built a multi-layer network model of temporal dynamics of genetic cooperativity in the brain of HD knock-in mice (allelic series of Hdh mice). To enhance biological precision and gene prioritization, we integrated three complementary families of source networks, all inferred from the same RNA-seq time series data in Hdh mice, into weighted-edge networks where an edge recapitulates path-length variation across source-networks and age-points. RESULTS: Weighted edge networks identify two consecutive waves of tight genetic cooperativity enriched in deregulated genes (critical phases), pre-symptomatically in the cortex, implicating neurotransmission, and symptomatically in the striatum, implicating cell survival (e.g. Hipk4) intertwined with cell proliferation (e.g. Scn4b) and cellular senescence (e.g. Cdkn2a products) responses. Top striatal weighted edges are enriched in modulators of defective behavior in invertebrate models of HD pathogenesis, validating their relevance to neuronal dysfunction in vivo. Collectively, these findings reveal highly dynamic temporal features of genetic cooperativity in the brain of Hdh mice where a 2-step logic highlights the importance of cellular maintenance and senescence in the striatum of symptomatic mice, providing highly prioritized targets. AVAILABILITY AND IMPLEMENTATION: Weighted edge network analysis (WENA) data and source codes for performing spectral decomposition of the signal (SDS) and WENA analysis, both written using Python, are available at http://www.broca.inserm.fr/HD-WENA/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cuerpo Estriado , Enfermedad de Huntington , Modelos Genéticos , Animales , Supervivencia Celular , Cuerpo Estriado/citología , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/patología
9.
Brain ; 142(8): 2432-2450, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31286142

RESUMEN

Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The main pathway for brain cholesterol elimination is its hydroxylation into 24S-hydroxycholesterol by the cholesterol 24-hydrolase, CYP46A1. Increasing evidence suggests that CYP46A1 has a role in the pathogenesis and progression of neurodegenerative disorders, and that increasing its levels in the brain is neuroprotective. However, the mechanisms underlying this neuroprotection remain to be fully understood. Huntington's disease is a fatal autosomal dominant neurodegenerative disease caused by an abnormal CAG expansion in huntingtin's gene. Among the multiple cellular and molecular dysfunctions caused by this mutation, altered brain cholesterol homeostasis has been described in patients and animal models as a critical event in Huntington's disease. Here, we demonstrate that a gene therapy approach based on the delivery of CYP46A1, the rate-limiting enzyme for cholesterol degradation in the brain, has a long-lasting neuroprotective effect in Huntington's disease and counteracts multiple detrimental effects of the mutated huntingtin. In zQ175 Huntington's disease knock-in mice, CYP46A1 prevented neuronal dysfunctions and restored cholesterol homeostasis. These events were associated to a specific striatal transcriptomic signature that compensates for multiple mHTT-induced dysfunctions. We thus explored the mechanisms for these compensations and showed an improvement of synaptic activity and connectivity along with the stimulation of the proteasome and autophagy machineries, which participate to the clearance of mutant huntingtin (mHTT) aggregates. Furthermore, BDNF vesicle axonal transport and TrkB endosome trafficking were restored in a cellular model of Huntington's disease. These results highlight the large-scale beneficial effect of restoring cholesterol homeostasis in neurodegenerative diseases and give new opportunities for developing innovative disease-modifying strategies in Huntington's disease.


Asunto(s)
Encéfalo/metabolismo , Colesterol 24-Hidroxilasa/uso terapéutico , Colesterol/metabolismo , Terapia Genética , Vectores Genéticos/uso terapéutico , Enfermedad de Huntington/terapia , Fármacos Neuroprotectores/uso terapéutico , Animales , Autofagia , Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo/fisiología , Células Cultivadas , Corteza Cerebral/fisiopatología , Colesterol 24-Hidroxilasa/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Dependovirus/genética , Endosomas/metabolismo , Técnicas de Sustitución del Gen , Vectores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiopatología , Fármacos Neuroprotectores/administración & dosificación , Oxiesteroles/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas , Proteínas Tirosina Quinasas/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Transmisión Sináptica , Transcriptoma
10.
Prog Neurobiol ; 181: 101662, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351912

RESUMEN

Systems biology and systems neurophysiology generate comprehensive mechanistic models of the spatial-temporal evolution of body system networks from physiological to pathophysiological conditions. Alzheimer's disease (AD)-related pathophysiological alterations converge with overexpressed age-related functional decline, i.e. aging, which is induced by genetic- and stochastic time-dependent events. Accumulation of cellular senescence has a casual role in aging-related disease and senotherapeutic drugs have already shown encouraging results for counteracting the detrimental effect of senescence. However, the non-linear complex nature of AD pathophysiology calls for a systems-level integration of aging dynamics, from molecules until large-scale networks. We need a holistic systems-wide comprehensive model of aging which is constituted by a non-linear spatial-temporal weakening of adaptive responses resulting in the activation of compensatory mechanisms that ensure biological robustness, resilience, and finally preserve homeodynamics. After exceeding the threshold of compensated (resilient) aging, a cascade of decompensatory events occurs, ultimately triggering irreversible systems failure that, at some advanced stages, reflect widespread "pathophysiological hallmarks of AD". The gap in the comprehensive understanding of aging, resilience, and AD pathophysiological evolution will be filled through a quantitative, flexible, and integrative modeling approach to detect multiple spatial-temporal patterns and for dissecting causal mechanisms and downstream cascades throughout the aging-AD continuum. Novel technological and conceptual advances, will enable the systems-level integration of aging signatures as well as compensatory mechanisms that provide resilience to early functional decline. This will provide new systems-scaled outcomes and endpoints to map and therapeutically enhance resilience, accomplishing a long-lasting compensated aging.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Biología de Sistemas , Integración de Sistemas , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/prevención & control , Humanos
11.
Alzheimers Dement ; 15(6): 764-775, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31113759

RESUMEN

INTRODUCTION: Blood-based biomarkers of pathophysiological brain amyloid ß (Aß) accumulation, particularly for preclinical target and large-scale interventions, are warranted to effectively enrich Alzheimer's disease clinical trials and management. METHODS: We investigated whether plasma concentrations of the Aß1-40/Aß1-42 ratio, assessed using the single-molecule array (Simoa) immunoassay, may predict brain Aß positron emission tomography status in a large-scale longitudinal monocentric cohort (N = 276) of older individuals with subjective memory complaints. We performed a hypothesis-driven investigation followed by a no-a-priori hypothesis study using machine learning. RESULTS: The receiver operating characteristic curve and machine learning showed a balanced accuracy of 76.5% and 81%, respectively, for the plasma Aß1-40/Aß1-42 ratio. The accuracy is not affected by the apolipoprotein E (APOE) ε4 allele, sex, or age. DISCUSSION: Our results encourage an independent validation cohort study to confirm the indication that the plasma Aß1-40/Aß1-42 ratio, assessed via Simoa, may improve future standard of care and clinical trial design.


Asunto(s)
Biomarcadores/sangre , Angiopatía Amiloide Cerebral/diagnóstico , Cognición/fisiología , Anciano , Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides , Encéfalo/metabolismo , Estudios de Cohortes , Femenino , Humanos , Aprendizaje Automático , Masculino , Memoria/fisiología , Fragmentos de Péptidos , Tomografía de Emisión de Positrones
12.
Mol Ther Nucleic Acids ; 15: 12-25, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30831428

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is caused by a small expansion of a short polyalanine (polyAla) tract in the poly(A)-binding protein nuclear 1 protein (PABPN1). Despite the monogenic nature of OPMD, no treatment is currently available. Here we report an RNA replacement strategy that has therapeutic potential in cell and C. elegans OPMD models. We develop selective microRNAs (miRNAs) against PABPN1, and we report that miRNAs and our previously developed hammerhead ribozymes (hhRzs) are capable of reducing the expression of both the mRNA and protein levels of PABPN1 by as much as 90%. Since OPMD derives from a very small expansion of GCG within the polyAla tract, our hhRz and miRNA molecules cannot distinguish between the wild-type and mutant mRNAs of PABPN1. Therefore, we designed an optimized-codon wild-type PABPN1 (opt-PABPN1) that is resistant to cleavage by hhRzs and miRNAs. Co-expression of opt-PABPN1 with either our hhRzs or miRNAs restored the level of PABPN1, concomitantly with a reduction in expanded PABPN1-associated cell death in a stable C2C12 OPMD model. Interestingly, knockdown of the PABPN1 by selective hhRzs in the C. elegans OPMD model significantly improved the motility of the PABPN1-13Ala worms. Taken together, RNA replacement therapy represents an exciting approach for OPMD treatment.

13.
Cell Death Differ ; 26(9): 1545-1565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30770874

RESUMEN

In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.


Asunto(s)
Autofagia/genética , Caenorhabditis elegans/genética , Glutatión Reductasa/metabolismo , Glutatión/metabolismo , Péptidos/toxicidad , Agregación Patológica de Proteínas/metabolismo , Proteostasis/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Glutatión/genética , Glutatión Reductasa/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Maleatos/farmacología , Células Musculares/metabolismo , Neuronas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Péptidos/antagonistas & inhibidores , Fenotipo , Proteolisis/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Cell Rep ; 26(9): 2477-2493.e9, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811995

RESUMEN

The role of brain cell-type-specific functions and profiles in pathological and non-pathological contexts is still poorly defined. Such cell-type-specific gene expression profiles in solid, adult tissues would benefit from approaches that avoid cellular stress during isolation. Here, we developed such an approach and identified highly selective transcriptomic signatures in adult mouse striatal direct and indirect spiny projection neurons, astrocytes, and microglia. Integrating transcriptomic and epigenetic data, we obtained a comprehensive model for cell-type-specific regulation of gene expression in the mouse striatum. A cross-analysis with transcriptomic and epigenomic data generated from mouse and human Huntington's disease (HD) brains shows that opposite epigenetic mechanisms govern the transcriptional regulation of striatal neurons and glial cells and may contribute to pathogenic and compensatory mechanisms. Overall, these data validate this less stressful method for the investigation of cellular specificity in the adult mouse brain and demonstrate the potential of integrative studies using multiple databases.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Huntington/genética , Animales , ADN/química , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Humanos , Enfermedad de Huntington/metabolismo , Captura por Microdisección con Láser/métodos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
15.
Neurology ; 91(6): e551-e561, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30006409

RESUMEN

OBJECTIVE: To explore valproic acid (VPA) as a potentially beneficial drug in cellular and worm models of oculopharyngeal muscular dystrophy (OPMD). METHODS: Using a combination of live cell imaging and biochemical measures, we evaluated the potential protective effect of VPA in a stable C2C12 muscle cell model of OPMD, in lymphoblastoid cell lines derived from patients with OPMD and in a transgenic Caenorhabditis elegans OPMD model expressing human mutant PABPN1. RESULTS: We demonstrated that VPA protects against the toxicity of mutant PABPN1. Of note, we found that VPA confers its long-term protective effects on C2C12 cell survival, proliferation, and differentiation by increasing the acetylated level of histones. Furthermore, VPA enhances the level of histone acetylation in lymphoblastoid cell lines derived from patients with OPMD. Moreover, treatment of nematodes with moderate concentrations of VPA significantly improved the motility of the PABPN-13 Alanines worms. CONCLUSIONS: Our results suggest that VPA helps to counteract OPMD-related phenotypes in the cellular and C elegans disease models.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Distrofia Muscular Oculofaríngea/patología , Distrofia Muscular Oculofaríngea/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Ácido Valproico/uso terapéutico , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/farmacología , Caenorhabditis elegans , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Humanos , Ratones , Distrofia Muscular Oculofaríngea/genética , Fármacos Neuroprotectores/farmacología , Proteína I de Unión a Poli(A)/genética , Ácido Valproico/farmacología
16.
J Am Geriatr Soc ; 66(6): 1151-1157, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676780

RESUMEN

OBJECTIVES: To compare the association between a restrictive transfusion strategy and cardiovascular complications during hospitalization for hip fracture with the association between a liberal transfusion strategy and cardiovascular complications, accounting for all transfusions from the emergency department to postacute rehabilitation settings. DESIGN: Retrospective study. SETTING: Perioperative geriatric care unit. PARTICIPANTS: All individuals aged 70 and older admitted to the emergency department for hip fracture and hospitalized in our perioperative geriatric care unit (N=667; n=193 in the liberal transfusion group, n=474 in the restrictive transfusion group) from July 2009 to April 2016. INTERVENTION: A restrictive transfusion strategy (hemoglobin level threshold ≥8 g/dL or symptoms) used from January 2012 to April 2016 was compared with the liberal transfusion strategy (hemoglobin level threshold ≥10 g/dL) used from July 2009 to December 2011. MEASUREMENTS: Primary endpoint was in-hospital acute cardiovascular complications (heart failure, myocardial infarction, atrial fibrillation or stroke). RESULTS: The change to a restrictive transfusion strategy was associated with fewer acute cardiovascular complications (odds ratio=0.45, 95% confidence interval (CI)=0.31-0.67, p<.001), without any noticeable difference in in-hospital or 6-month mortality. The change also led to a reduction in packed red blood cell units used per participant (median 1, interquartile range (IQR) 0-2 in restrictive vs median 2, IQR 0-3 in liberal transfusion strategy, P<.001). In rehabilitation settings, the frequency of transfusion was greater with the restrictive transfusion strategy than the liberal transfusion strategy (18% vs 9%, P<.001). CONCLUSION: A restrictive transfusion strategy in older adults with hip fracture was found to be safe and was associated with fewer cardiovascular complications but more transfusions in rehabilitation settings. Prospective studies are needed to confirm these findings.


Asunto(s)
Anemia/terapia , Transfusión Sanguínea , Enfermedades Cardiovasculares , Fijación de Fractura/efectos adversos , Atención Perioperativa , Complicaciones Posoperatorias , Anciano , Anemia/diagnóstico , Anemia/etiología , Transfusión Sanguínea/métodos , Transfusión Sanguínea/estadística & datos numéricos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Femenino , Fijación de Fractura/rehabilitación , Francia/epidemiología , Evaluación Geriátrica/métodos , Fracturas de Cadera/cirugía , Humanos , Masculino , Atención Perioperativa/efectos adversos , Atención Perioperativa/métodos , Atención Perioperativa/estadística & datos numéricos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/terapia , Estudios Retrospectivos
17.
J Alzheimers Dis ; 64(s1): S47-S105, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29562524

RESUMEN

The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Medicina de Precisión , Animales , Encéfalo/diagnóstico por imagen , Humanos , Neurología , Neurofisiología , Biología de Sistemas , Investigación Biomédica Traslacional
18.
Geroscience ; 39(5-6): 499-550, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29270905

RESUMEN

A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.


Asunto(s)
Adaptación Fisiológica , Envejecimiento/genética , Dieta Rica en Proteínas/estadística & datos numéricos , Hipercolesterolemia/epidemiología , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Femenino , Francia , Radicales Libres/metabolismo , Evaluación Geriátrica , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo
19.
Sci Rep ; 7(1): 4014, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28638078

RESUMEN

Helping neurons to compensate for proteotoxic stress and maintain function over time (neuronal compensation) has therapeutic potential in aging and neurodegenerative disease. The stress response factor FOXO3 is neuroprotective in models of Huntington's disease (HD), Parkinson's disease and motor-neuron diseases. Neuroprotective compounds acting in a FOXO-dependent manner could thus constitute bona fide drugs for promoting neuronal compensation. However, whether FOXO-dependent neuroprotection is a common feature of several compound families remains unknown. Using drug screening in C. elegans nematodes with neuronal expression of human exon-1 huntingtin (128Q), we found that 3ß-Methoxy-Pregnenolone (MAP4343), 17ß-oestradiol (17ßE2) and 12 flavonoids including isoquercitrin promote neuronal function in 128Q nematodes. MAP4343, 17ßE2 and isoquercitrin also promote stress resistance in mutant Htt striatal cells derived from knock-in HD mice. Interestingly, daf-16/FOXO is required for MAP4343, 17ßE2 and isoquercitrin to sustain neuronal function in 128Q nematodes. This similarly applies to the GSK3 inhibitor lithium chloride (LiCl) and, as previously described, to resveratrol and the AMPK activator metformin. Daf-16/FOXO and the targets engaged by these compounds define a sub-network enriched for stress-response and neuronally-active pathways. Collectively, these data highlights the dependence on a daf-16/FOXO-interaction network as a common feature of several compound families for prolonging neuronal function in HD.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteína Forkhead Box O3/genética , Factores de Transcripción Forkhead/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Cloruro de Litio/administración & dosificación , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Pregnenolona/administración & dosificación , Quercetina/administración & dosificación , Quercetina/análogos & derivados
20.
Nature ; 542(7641): 367-371, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28178240

RESUMEN

The toxicity of misfolded proteins and mitochondrial dysfunction are pivotal factors that promote age-associated functional neuronal decline and neurodegenerative disease. Accordingly, neurons invest considerable cellular resources in chaperones, protein degradation, autophagy and mitophagy to maintain proteostasis and mitochondrial quality. Complicating the challenges of neuroprotection, misfolded human disease proteins and mitochondria can move into neighbouring cells via unknown mechanisms, which may promote pathological spread. Here we show that adult neurons from Caenorhabditis elegans extrude large (approximately 4 µm) membrane-surrounded vesicles called exophers that can contain protein aggregates and organelles. Inhibition of chaperone expression, autophagy or the proteasome, in addition to compromising mitochondrial quality, enhances the production of exophers. Proteotoxically stressed neurons that generate exophers subsequently function better than similarly stressed neurons that did not produce exophers. The extruded exopher transits through surrounding tissue in which some contents appear degraded, but some non-degradable materials can subsequently be found in more remote cells, suggesting secondary release. Our observations suggest that exopher-genesis is a potential response to rid cells of neurotoxic components when proteostasis and organelle function are challenged. We propose that exophers are components of a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, which, when dysfunctional or diminished with age, might actively contribute to pathogenesis in human neurodegenerative disease and brain ageing.


Asunto(s)
Caenorhabditis elegans/metabolismo , Micropartículas Derivadas de Células/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/fisiología , Agregado de Proteínas , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Autofagia , Caenorhabditis elegans/citología , Citoplasma/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Oxidación-Reducción , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA