Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Rep ; 14(1): 20988, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251664

RESUMEN

Image segmentation of the liver is an important step in treatment planning for liver cancer. However, manual segmentation at a large scale is not practical, leading to increasing reliance on deep learning models to automatically segment the liver. This manuscript develops a generalizable deep learning model to segment the liver on T1-weighted MR images. In particular, three distinct deep learning architectures (nnUNet, PocketNet, Swin UNETR) were considered using data gathered from six geographically different institutions. A total of 819 T1-weighted MR images were gathered from both public and internal sources. Our experiments compared each architecture's testing performance when trained both intra-institutionally and inter-institutionally. Models trained using nnUNet and its PocketNet variant achieved mean Dice-Sorensen similarity coefficients>0.9 on both intra- and inter-institutional test set data. The performance of these models suggests that nnUNet and PocketNet liver segmentation models trained on a large and diverse collection of T1-weighted MR images would on average achieve good intra-institutional segmentation performance.


Asunto(s)
Aprendizaje Profundo , Hepatopatías , Hígado , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Hígado/patología , Hepatopatías/diagnóstico por imagen , Hepatopatías/patología , Medios de Contraste , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología
2.
Radiother Oncol ; 201: 110542, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299574

RESUMEN

BACKGROUND/PURPOSE: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. METHODS: We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. RESULTS: We identified 56 articles published from 2015 to 2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50 %), followed by image-synthesis (13 %), and multiple applications simultaneously (11 %). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32 %). Imaging data was used in 91 % of studies, while only 13 % incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60 %), with Monte Carlo dropout being the most commonly implemented UQ method (32 %) followed by ensembling (16 %). 55 % of studies did not share code or datasets. CONCLUSION: Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, we identified a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.

3.
Diagnostics (Basel) ; 14(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125508

RESUMEN

This study aimed to determine the relationship between geometric and dosimetric agreement metrics in head and neck (H&N) cancer radiotherapy plans. A total 287 plans were retrospectively analyzed, comparing auto-contoured and clinically used contours using a Dice similarity coefficient (DSC), surface DSC (sDSC), and Hausdorff distance (HD). Organs-at-risk (OARs) with ≥200 cGy dose differences from the clinical contour in terms of Dmax (D0.01cc) and Dmean were further examined against proximity to the planning target volume (PTV). A secondary set of 91 plans from multiple institutions validated these findings. For 4995 contour pairs across 19 OARs, 90% had a DSC, sDSC, and HD of at least 0.75, 0.86, and less than 7.65 mm, respectively. Dosimetrically, the absolute difference between the two contour sets was <200 cGy for 95% of OARs in terms of Dmax and 96% in terms of Dmean. In total, 97% of OARs exhibiting significant dose differences between the clinically edited contour and auto-contour were within 2.5 cm PTV regardless of geometric agreement. There was an approximately linear trend between geometric agreement and identifying at least 200 cGy dose differences, with higher geometric agreement corresponding to a lower fraction of cases being identified. Analysis of the secondary dataset validated these findings. Geometric indices are approximate indicators of contour quality and identify contours exhibiting significant dosimetric discordance. For a small subset of OARs within 2.5 cm of the PTV, geometric agreement metrics can be misleading in terms of contour quality.

4.
J Appl Clin Med Phys ; : e14474, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074490

RESUMEN

BACKGROUND: The delineation of clinical target volumes (CTVs) for radiotherapy for nasopharyngeal cancer is complex and varies based on the location and extent of disease. PURPOSE: The current study aimed to develop an auto-contouring solution following one protocol guidelines (NRG-HN001) that can be adjusted to meet other guidelines, such as RTOG-0225 and the 2018 International guidelines. METHODS: The study used 2-channel 3-dimensional U-Net and nnU-Net framework to auto-contour 27 normal structures in the head and neck (H&N) region that are used to define CTVs in the protocol. To define the CTV-Expansion (CTV1 and CTV2) and CTV-Overall (the outer envelope of all the CTV contours), we used adjustable morphological geometric landmarks and mimicked physician interpretation of the protocol rules by partially or fully including select anatomic structures. The results were evaluated quantitatively using the dice similarity coefficient (DSC) and mean surface distance (MSD) and qualitatively by independent reviews by two H&N radiation oncologists. RESULTS: The auto-contouring tool showed high accuracy for nasopharyngeal CTVs. Comparison between auto-contours and clinical contours for 19 patients with cancers of various stages showed a DSC of 0.94 ± 0.02 and MSD of 0.4 ± 0.4 mm for CTV-Expansion and a DSC of 0.83 ± 0.02 and MSD of 2.4 ± 0.5 mm for CTV-Overall. Upon independent review, two H&N physicians found the auto-contours to be usable without edits in 85% and 75% of cases. In 15% of cases, minor edits were required by both physicians. Thus, one physician rated 100% of the auto-contours as usable (use as is, or after minor edits), while the other physician rated 90% as usable. The second physician required major edits in 10% of cases. CONCLUSIONS: The study demonstrates the ability of an auto-contouring tool to reliably delineate nasopharyngeal CTVs based on protocol guidelines. The tool was found to be clinically acceptable by two H&N radiation oncology physicians in at least 90% of the cases.

5.
ArXiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38711427

RESUMEN

Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds. Our work offers 1) test time image reconstruction evaluation without ground truth, 2) downstream performance guarantees, 3) meaningful upper/lower bound reconstructions, and 4) meaningful statistical inliers/outlier reconstructions. We demonstrate our method on post-mastectomy radiotherapy planning using 3D breast CT reconstructions, and show 1) that metric-guided bounds have valid coverage for downstream metrics while conventional pixel-wise bounds do not and 2) anatomical differences of upper/lower bounds between metric-guided and pixel-wise methods. Our work paves way for more meaningful and trustworthy test-time evaluation of medical image reconstructions. Code available at https://github.com/matthewyccheung/conformal-metric.

7.
medRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798581

RESUMEN

Background/purpose: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. Methods: We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. Results: We identified 56 articles published from 2015-2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50%), followed by image-synthesis (13%), and multiple applications simultaneously (11%). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32%). Imaging data was used in 91% of studies, while only 13% incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60%), with Monte Carlo dropout being the most commonly implemented UQ method (32%) followed by ensembling (16%). 55% of studies did not share code or datasets. Conclusion: Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, there was a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.

8.
Phys Imaging Radiat Oncol ; 29: 100540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38356692

RESUMEN

Background and Purpose: Auto-contouring of complex anatomy in computed tomography (CT) scans is a highly anticipated solution to many problems in radiotherapy. In this study, artificial intelligence (AI)-based auto-contouring models were clinically validated for lymph node levels and structures of swallowing and chewing in the head and neck. Materials and Methods: CT scans of 145 head and neck radiotherapy patients were retrospectively curated. One cohort (n = 47) was used to analyze seven lymph node levels and the other (n = 98) used to analyze 17 swallowing and chewing structures. Separate nnUnet models were trained and validated using the separate cohorts. For the lymph node levels, preference and clinical acceptability of AI vs human contours were scored. For the swallowing and chewing structures, clinical acceptability was scored. Quantitative analyses of the test sets were performed for AI vs human contours for all structures using overlap and distance metrics. Results: Median Dice Similarity Coefficient ranged from 0.77 to 0.89 for lymph node levels and 0.86 to 0.96 for chewing and swallowing structures. The AI contours were superior to or equally preferred to the manual contours at rates ranging from 75% to 91%; there was not a significant difference in clinical acceptability for nodal levels I-V for manual versus AI contours. Across all AI-generated lymph node level contours, 92% were rated as usable with stylistic to no edits. Of the 340 contours in the chewing and swallowing cohort, 4% required minor edits. Conclusions: An accurate approach was developed to auto-contour lymph node levels and chewing and swallowing structures on CT images for patients with intact nodal anatomy. Only a small portion of test set auto-contours required minor edits.

9.
Sci Rep ; 13(1): 21797, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066074

RESUMEN

Planning for palliative radiotherapy is performed without the advantage of MR or PET imaging in many clinics. Here, we investigated CT-only GTV delineation for palliative treatment of head and neck cancer. Two multi-institutional datasets of palliative-intent treatment plans were retrospectively acquired: a set of 102 non-contrast-enhanced CTs and a set of 96 contrast-enhanced CTs. The nnU-Net auto-segmentation network was chosen for its strength in medical image segmentation, and five approaches separately trained: (1) heuristic-cropped, non-contrast images with a single GTV channel, (2) cropping around a manually-placed point in the tumor center for non-contrast images with a single GTV channel, (3) contrast-enhanced images with a single GTV channel, (4) contrast-enhanced images with separate primary and nodal GTV channels, and (5) contrast-enhanced images along with synthetic MR images with separate primary and nodal GTV channels. Median Dice similarity coefficient ranged from 0.6 to 0.7, surface Dice from 0.30 to 0.56, and 95th Hausdorff distance from 14.7 to 19.7 mm across the five approaches. Only surface Dice exhibited statistically-significant difference across these five approaches using a two-tailed Wilcoxon Rank-Sum test (p ≤ 0.05). Our CT-only results met or exceeded published values for head and neck GTV autocontouring using multi-modality images. However, significant edits would be necessary before clinical use in palliative radiotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Cuidados Paliativos , Tomografía de Emisión de Positrones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Estudios Multicéntricos como Asunto
11.
Front Oncol ; 13: 1204323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771435

RESUMEN

Purpose: Variability in contouring structures of interest for radiotherapy continues to be challenging. Although training can reduce such variability, having radiation oncologists provide feedback can be impractical. We developed a contour training tool to provide real-time feedback to trainees, thereby reducing variability in contouring. Methods: We developed a novel metric termed localized signed square distance (LSSD) to provide feedback to the trainee on how their contour compares with a reference contour, which is generated real-time by combining trainee contour and multiple expert radiation oncologist contours. Nine trainees performed contour training by using six randomly assigned training cases that included one test case of the heart and left ventricle (LV). The test case was repeated 30 days later to assess retention. The distribution of LSSD maps of the initial contour for the training cases was combined and compared with the distribution of LSSD maps of the final contours for all training cases. The difference in standard deviations from the initial to final LSSD maps, ΔLSSD, was computed both on a per-case basis and for the entire group. Results: For every training case, statistically significant ΔLSSD were observed for both the heart and LV. When all initial and final LSSD maps were aggregated for the training cases, before training, the mean LSSD ([range], standard deviation) was -0.8 mm ([-37.9, 34.9], 4.2) and 0.3 mm ([-25.1, 32.7], 4.8) for heart and LV, respectively. These were reduced to -0.1 mm ([-16.2, 7.3], 0.8) and 0.1 mm ([-6.6, 8.3], 0.7) for the final LSSD maps during the contour training sessions. For the retention case, the initial and final LSSD maps of the retention case were aggregated and were -1.5 mm ([-22.9, 19.9], 3.4) and -0.2 mm ([-4.5, 1.5], 0.7) for the heart and 1.8 mm ([-16.7, 34.5], 5.1) and 0.2 mm ([-3.9, 1.6],0.7) for the LV. Conclusions: A tool that uses real-time contouring feedback was developed and successfully used for contour training of nine trainees. In all cases, the utility was able to guide the trainee and ultimately reduce the variability of the trainee's contouring.

12.
Med Phys ; 50(11): 6639-6648, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37706560

RESUMEN

BACKGROUND: In recent years, deep-learning models have been used to predict entire three-dimensional dose distributions. However, the usability of dose predictions to improve plan quality should be further investigated. PURPOSE: To develop a deep-learning model to predict high-quality dose distributions for volumetric modulated arc therapy (VMAT) plans for patients with gynecologic cancer and to evaluate their usability in driving plan quality improvements. METHODS: A total of 79 VMAT plans for the female pelvis were used to train (47 plans), validate (16 plans), and test (16 plans) 3D dense dilated U-Net models to predict 3D dose distributions. The models received the normalized CT scan, dose prescription, and target and normal tissue contours as inputs. Three models were used to predict the dose distributions for plans in the test set. A radiation oncologist specializing in the treatment of gynecologic cancers scored the test set predictions using a 5-point scale (5, acceptable as-is; 4, prefer minor edits; 3, minor edits needed; 2, major edits needed; and 1, unacceptable). The clinical plans for which the dose predictions indicated that improvements could be made were reoptimized with constraints extracted from the predictions. RESULTS: The predicted dose distributions in the test set were of comparable quality to the clinical plans. The mean voxel-wise dose difference was -0.14 ± 0.46 Gy. The percentage dose differences in the predicted target metrics of D 1 % ${D}_{1{\mathrm{\% }}}$ and D 98 % ${D}_{98{\mathrm{\% }}}$ were -1.05% ± 0.59% and 0.21% ± 0.28%, respectively. The dose differences in the predicted organ at risk mean and maximum doses were -0.30 ± 1.66 Gy and -0.42 ± 2.07 Gy, respectively. A radiation oncologist deemed all of the predicted dose distributions clinically acceptable; 12 received a score of 5, and four received a score of 4. Replanning of flagged plans (five plans) showed that the original plans could be further optimized to give dose distributions close to the predicted dose distributions. CONCLUSIONS: Deep-learning dose prediction can be used to predict high-quality and clinically acceptable dose distributions for VMAT female pelvis plans, which can then be used to identify plans that can be improved with additional optimization.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Radioterapia de Intensidad Modulada , Humanos , Femenino , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo
13.
Phys Imaging Radiat Oncol ; 26: 100440, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37342210

RESUMEN

Background and purpose: A novel cobalt-60 compensator-based intensity-modulated radiation therapy (IMRT) system was developed for a resource-limited environment but lacked an efficient dose verification algorithm. The aim of this study was to develop a deep-learning-based dose verification algorithm for accurate and rapid dose predictions. Materials and methods: A deep-learning network was employed to predict the doses from static fields related to beam commissioning. Inputs were a cube-shaped phantom, a beam binary mask, and an intersecting volume of the phantom and beam binary mask, while output was a 3-dimensional (3D) dose. The same network was extended to predict patient-specific doses for head and neck cancers using two different approaches. A field-based method predicted doses for each field and combined all calculated doses into a plan, while the plan-based method combined all nine fluences into a plan to predict doses. Inputs included patient computed tomography (CT) scans, binary beam masks, and fluence maps truncated to the patient's CT in 3D. Results: For static fields, predictions agreed well with ground truths with average deviations of less than 0.5% for percent depth doses and profiles. Even though the field-based method showed excellent prediction performance for each field, the plan-based method showed better agreement between clinical and predicted dose distributions. The distributed dose deviations for all planned target volumes and organs at risk were within 1.3 Gy. The calculation speed for each case was within two seconds. Conclusions: A deep-learning-based dose verification tool can accurately and rapidly predict doses for a novel cobalt-60 compensator-based IMRT system.

14.
Med Phys ; 50(7): 4466-4479, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37086040

RESUMEN

PURPOSE: A novel compensator-based system has been proposed which delivers intensity-modulated radiation therapy (IMRT) with cobalt-60 beams. This could improve access to advanced radiotherapy in low- and middle-income countries. For this system to be clinically viable and to be adapted into the Radiation Planning Assistant (RPA), being developed to offer automated planning services in low- and middle-income countries, it is necessary to commission and validate it in a commercial treatment planning system (TPS). METHODS: The novel treatment device considered here employs a cobalt-60 source and nine compensators. Each compensator is produced by 3-D printing a thin plastic mold which is then filled on-demand within the machine with reusable 2-mm-diameter spherical tungsten balls. This system was commissioned in the Eclipse TPS and validation tests were conducted with Monte Carlo using Geant4 Application for Tomographic Emission for percentage depth dose, in-plane profiles, penumbra, and IMRT dose validation. And the American Association of Physicists in Medicine Task Group 119 benchmarking testing was performed. Additionally, compensator-based cobalt-60 IMRT plans were created for 46 head-and-neck cancer cases and compared to the linac-based volumetric modulated arc therapy (VMAT) plans used clinically, then dosimetric parameters were evaluated. Beam-on time for each field was calculated. In addition, the measurement was also performed in a limited environment and compared with the Monte Carlo simulations. RESULTS: The differences in percent depth doses and in-plane profiles between the Eclipse and Monte Carlo simulations were 0.65% ± 0.41% and 1.02% ± 0.99%, respectively, and the 80%-20% penumbra agreed within 0.46 ± 0.27 mm. For the Task Group 119 validation plans, all treatment planning goals were met and gamma passing rates were >95% (3%/3 mm criteria). In 46 clinical head-and-neck cases, the cobalt-60 compensator-based IMRT plans had planning target volume (PTV) coverages similar to linac-based VMAT plans: all dosimetric values for PTV were within 1.5%. The organs at risk dose parameters were somewhat higher in cobalt-60 compensator-based IMRT plans versus linac-based VMAT plans. The mean dose differences for the spinal cord, brain, and brainstem were 4.43 ± 1.92, 3.39 ± 4.67, and 2.40 ± 3.71 Gy, while those for the rest of the organs were <1 Gy. The average beam-on time per field was 0.42 ± 0.10 min for the 6 MV multi-leaf-collimator plans while those for the cobalt-60 compensator plans were 0.17 ± 0.01 and 0.31 ± 0.01 min at the dose rates of 350 and 175 cGy/min. There was a good agreement between in-plane profiles from measurements and Monte Carlo simulations, which differences are 1.34 ± 1.90% and 0.13 ± 2.16% for two different fields. CONCLUSIONS: A novel compensator-based IMRT system using cobalt-60 beams was commissioned and validated in a commercial TPS. Plan quality with this system was comparable to that of linac-based plans in all test cases with shorter estimated beam-on times. This system enables reliable, high-quality plans with reduced cost and complexity and may have benefits for underserved regions of the world. This system is being integrated into the RPA, a web-based platform for auto-contouring and auto-planning.


Asunto(s)
Radioterapia de Intensidad Modulada , Radioterapia de Intensidad Modulada/métodos , Radioisótopos de Cobalto/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica
15.
Diagnostics (Basel) ; 13(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832155

RESUMEN

Developers and users of artificial-intelligence-based tools for automatic contouring and treatment planning in radiotherapy are expected to assess clinical acceptability of these tools. However, what is 'clinical acceptability'? Quantitative and qualitative approaches have been used to assess this ill-defined concept, all of which have advantages and disadvantages or limitations. The approach chosen may depend on the goal of the study as well as on available resources. In this paper, we discuss various aspects of 'clinical acceptability' and how they can move us toward a standard for defining clinical acceptability of new autocontouring and planning tools.

17.
Ann Surg Oncol ; 30(6): 3712-3720, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36662331

RESUMEN

BACKGROUND: Outcomes studies for abdominal wall reconstruction (AWR) in the setting of previous oncologic extirpation are lacking. We sought to evaluate long-term outcomes of AWR using acellular dermal matrix (ADM) after extirpative resection, compare them to primary herniorrhaphy, and report the rates and predictors of postoperative complications. METHODS: We conducted a retrospective cohort study of patients who underwent AWR after oncologic resection from March 2005 to June 2019 at a tertiary cancer center. The primary outcome was hernia recurrence (HR). Secondary outcomes included surgical site occurrences (SSOs), surgical site infection (SSIs), length of hospital stay (LOS), reoperation, and 30-day readmission. RESULTS: Of 720 consecutive patients who underwent AWR during the study period, 194 (26.9%) underwent AWR following resection of abdominal wall tumors. In adjusted analyses, patients who had AWR after extirpative resection were more likely to have longer LOS (ß, 2.57; 95%CI, 1.27 to 3.86, p < 0.001) than those with primary herniorrhaphy, but the risk of HR, SSO, SSI, 30-day readmission, and reoperation did not differ significantly. In the extirpative cohort, obesity (Hazard ratio, 6.48; p = 0.003), and bridged repair (Hazard ratio, 3.50; p = 0.004) were predictors of HR. Radiotherapy (OR, 2.23; p = 0.017) and diabetes mellites (OR, 3.70; p = 0.005) were predictors of SSOs. Defect width (OR, 2.30; p < 0.001) and mesh length (OR, 3.32; p = 0.046) were predictors of SSIs. Concomitant intra-abdominal surgery for active disease was not associated with worse outcomes. CONCLUSIONS: AWR with ADM following extirpative resection demonstrated outcomes comparable with primary herniorrhaphy. Preoperative risk assessment and optimization are imperative for improving outcomes.


Asunto(s)
Pared Abdominal , Hernia Ventral , Humanos , Pared Abdominal/cirugía , Hernia Ventral/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/complicaciones , Herniorrafia/efectos adversos , Infección de la Herida Quirúrgica/etiología , Infección de la Herida Quirúrgica/cirugía , Mallas Quirúrgicas/efectos adversos , Recurrencia
18.
Sci Rep ; 12(1): 19093, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351987

RESUMEN

Manually delineating upper abdominal organs at risk (OARs) is a time-consuming task. To develop a deep-learning-based tool for accurate and robust auto-segmentation of these OARs, forty pancreatic cancer patients with contrast-enhanced breath-hold computed tomographic (CT) images were selected. We trained a three-dimensional (3D) U-Net ensemble that automatically segments all organ contours concurrently with the self-configuring nnU-Net framework. Our tool's performance was assessed on a held-out test set of 30 patients quantitatively. Five radiation oncologists from three different institutions assessed the performance of the tool using a 5-point Likert scale on an additional 75 randomly selected test patients. The mean (± std. dev.) Dice similarity coefficient values between the automatic segmentation and the ground truth on contrast-enhanced CT images were 0.80 ± 0.08, 0.89 ± 0.05, 0.90 ± 0.06, 0.92 ± 0.03, 0.96 ± 0.01, 0.97 ± 0.01, 0.96 ± 0.01, and 0.96 ± 0.01 for the duodenum, small bowel, large bowel, stomach, liver, spleen, right kidney, and left kidney, respectively. 89.3% (contrast-enhanced) and 85.3% (non-contrast-enhanced) of duodenum contours were scored as a 3 or above, which required only minor edits. More than 90% of the other organs' contours were scored as a 3 or above. Our tool achieved a high level of clinical acceptability with a small training dataset and provides accurate contours for treatment planning.


Asunto(s)
Órganos en Riesgo , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Abdomen/diagnóstico por imagen , Hígado , Planificación de Atención al Paciente , Procesamiento de Imagen Asistido por Computador/métodos
19.
Med Phys ; 49(9): 5742-5751, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35866442

RESUMEN

PURPOSE: To fully automate CT-based cervical cancer radiotherapy by automating contouring and planning for three different treatment techniques. METHODS: We automated three different radiotherapy planning techniques for locally advanced cervical cancer: 2D 4-field-box (4-field-box), 3D conformal radiotherapy (3D-CRT), and volumetric modulated arc therapy (VMAT). These auto-planning algorithms were combined with a previously developed auto-contouring system. To improve the quality of the 4-field-box and 3D-CRT plans, we used an in-house, field-in-field (FIF) automation program. Thirty-five plans were generated for each technique on CT scans from multiple institutions and evaluated by five experienced radiation oncologists from three different countries. Every plan was reviewed by two of the five radiation oncologists and scored using a 5-point Likert scale. RESULTS: Overall, 87%, 99%, and 94% of the automatically generated plans were found to be clinically acceptable without modification for the 4-field-box, 3D-CRT, and VMAT plans, respectively. Some customizations of the FIF configuration were necessary on the basis of radiation oncologist preference. Additionally, in some cases, it was necessary to renormalize the plan after it was generated to satisfy radiation oncologist preference. CONCLUSION: Approximately, 90% of the automatically generated plans were clinically acceptable for all three planning techniques. This fully automated planning system has been implemented into the radiation planning assistant for further testing in resource-constrained radiotherapy departments in low- and middle-income countries.


Asunto(s)
Radioterapia Conformacional , Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino , Femenino , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia
20.
Int J Radiat Oncol Biol Phys ; 114(3): 516-528, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787928

RESUMEN

PURPOSE: Complicating factors such as time pressures, anatomic variants in the spine, and similarities in adjacent vertebrae are associated with incorrect level treatments of the spine. The purpose of this work was to mitigate such challenges by fully automating the treatment planning process for diagnostic and simulation computed tomography (CT) scans. METHODS AND MATERIALS: Vertebral bodies are labeled on CT scans of any length using 2 intendent deep-learning models-mirroring 2 different experts labeling the spine. Then, a U-Net++ architecture was trained, validated, and tested to contour each vertebra (n = 220 CT scans). Features from the CT and auto-contours were input into a random forest classifier to predict whether vertebrae were correctly labeled. This classifier was trained using auto-contours from cone beam computed tomography, positron emission tomography/CT, simulation CT, and diagnostic CT images (n = 56 CT scans, 751 contours). Auto-plans were generated via scripting. Each model was combined into a framework to make a fully automated clinical tool. A retrospective planning study was conducted in which 3 radiation oncologists scored auto-plan quality on an unseen patient cohort (n = 60) on a 5-point scale. CT scans varied in scan length, presence of surgical implants, imaging protocol, and metastatic burden. RESULTS: The results showed that the uniquely designed convolutional neural networks accurately labeled and segmented vertebral bodies C1-L5 regardless of imaging protocol or metastatic burden. Mean dice-similarity coefficient was 85.0% (cervical), 90.3% (thoracic), and 93.7% (lumbar). The random forest classifier predicted mislabeling across various CT scan types with an area under the curve of 0.82. All contouring and labeling errors within treatment regions (11 of 11), including errors from patient plans with atypical anatomy (eg, T13, L6) were detected. Radiation oncologists scored 98% of simulation CT-based plans and 92% of diagnostic CT-based plans as clinically acceptable or needing minor edits for patients with typical anatomy. On average, end-to-end treatment planning time of the clinical tool was less than 8 minutes. CONCLUSIONS: This novel method to automatically verify, contour, and plan palliative spine treatments is efficient and effective across various CT scan types. Furthermore, it is the first to create a clinical tool that can automatically verify vertebral level in CT images.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Automatización , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Columna Vertebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA