Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 14(1): 10054, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698053

RESUMEN

ß-Thalassaemia is one of the most common genetic diseases worldwide. During the past few decades, life expectancy of patients has increased significantly owing to advance in medical treatments. Cognitive impairment, once has been neglected, has gradually become more documented. Cognitive impairment in ß-thalassaemia patients is associated with natural history of the disease and socioeconomic factors. Herein, to determined effect of ß-thalassaemia intrinsic factors, 22-month-old ß-thalassaemia mouse was used as a model to assess cognitive impairment and to investigate any aberrant brain pathology in ß-thalassaemia. Open field test showed that ß-thalassaemia mice had decreased motor function. However, no difference of neuronal degeneration in primary motor cortex, layer 2/3 area was found. Interestingly, impaired learning and memory function accessed by a Morris water maze test was observed and correlated with a reduced number of living pyramidal neurons in hippocampus at the CA3 region in ß-thalassaemia mice. Cognitive impairment in ß-thalassaemia mice was significantly correlated with several intrinsic ß-thalassaemic factors including iron overload, anaemia, damaged red blood cells (RBCs), phosphatidylserine (PS)-exposed RBC large extracellular vesicles (EVs) and PS-exposed medium EVs. This highlights the importance of blood transfusion and iron chelation in ß-thalassaemia patients. In addition, to improve patients' quality of life, assessment of cognitive functions should become part of routine follow-up.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Hipocampo , Talasemia beta , Animales , Talasemia beta/patología , Talasemia beta/complicaciones , Talasemia beta/genética , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Ratones , Hipocampo/patología , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Neuronas/patología , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Vesículas Extracelulares/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Células Piramidales/metabolismo , Células Piramidales/patología , Aprendizaje por Laberinto
2.
Food Chem Toxicol ; 157: 112610, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34653556

RESUMEN

Methamphetamine (MA) is a psychostimulant and addictive substance. Long-term uses and toxic high doses of MA can induce neurotoxicity. The present study aimed to investigate the protective role of melatonin against MA toxicity-induced dysregulation of the neurotransmission related to cognitive function in rats. The adult male Sprague Dawley rats were intraperitoneally injected with 5 mg/kg MA for 7 consecutive days with or without subcutaneously injected with 10 mg/kg melatonin before MA injection. Some rats were injected with saline solution (control) or 10 mg/kg melatonin. MA administration induced reduction in total weight gain, neurotoxic features of stereotyped behaviors, deficits in cognitive flexibility, and significantly increased lipid peroxidation in the brain which diminished in melatonin pretreatment. The neurotoxic effect of MA on glutamate, dopamine and GABA transmitters was represented by the alteration of the GluR1, DARPP-32 and parvalbumin (PV) levels, respectively. A significant decrease in the GluR1 was observed in the prefrontal cortex of MA administration in rats. MA administration significantly increased the DARPP-32 but decreased PV in the striatum. Pretreatment of melatonin can abolish the neurotoxic effect of MA on neurotransmission dysregulation. These findings might reveal the antioxidative role of melatonin to restore neurotransmission dysregulation related to cognitive deficits in MA-induced neurotoxicity.


Asunto(s)
Trastornos del Conocimiento/inducido químicamente , Melatonina/farmacología , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Atención/efectos de los fármacos , Western Blotting , Cognición/efectos de los fármacos , Trastornos del Conocimiento/prevención & control , Cuerpo Estriado/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Metanfetamina/antagonistas & inhibidores , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Conducta Estereotipada/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-32941923

RESUMEN

Methamphetamine (METH) is a highly addictive psychostimulant that causes significant health issues due to high prevalence of its illegal use. Chronic use of METH is associated with cognitive impairments in both human and animal studies, but the underlying mechanism remains unclear. METH-induced neuroinflammation is, potentially, one of the factors that causes cognitive impairments. Therefore, the present study aimed to assess whether melatonin could provide protection against inflammation, in a manner comparable to the anti-inflammatory agent, minocycline, with consequent improvements of METH-induced cognitive impairments and associated abnormalities in the mouse hippocampus. Results from the Morris water maze (MWM) test and the novel object recognition test (NORT) showed that melatonin given after METH injections could ameliorate both METH-induced spatial and recognition memory impairments. These memory impairments are associated with changes in the neuroinflammatory profiles, including IL-6, IL-1ß, and TNF-α, both in the blood serum and hippocampus of adult mice. METH-treated mice also exhibited reactive astrocytes and activated microglia in the hippocampus. METH-induced activation of glial cells is associated with the activation of the TLR4/MyD88/NFκB signaling pathway. Moreover, melatonin administration led to recovery of these METH-induced markers to control levels. Thus, we conclude that melatonin could potentially be used as a cognitive enhancer and anti-inflammatory agent in the treatment of METH use disorder in humans.


Asunto(s)
Antiinflamatorios/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Disfunción Cognitiva/inducido químicamente , Melatonina/metabolismo , Metanfetamina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Hipocampo/metabolismo , Inflamación , Melatonina/farmacología , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo
4.
Life Sci ; 265: 118844, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33278389

RESUMEN

AIMS: Methamphetamine (METH) has become a major public health problem because of its abuse and profound neurotoxic effects, causing alterations in brain structure and function, and impairing cognitive functions, including attention, decision making, emotional memory, and working memory. This study aimed to determine whether melatonin (MEL), the circadian-control hormone, which has roles beyond circadian rhythm regulation, could restore METH-induced cognitive and neuronal impairment. MAIN METHODS: Mice were treated with either METH (1 mg/kg) or saline for 7 days, followed by MEL (10 mg/kg) or saline for another 14 days. The Morris water maze (MWM) test was performed one day after the last saline or MEL injection. The hippocampal neuronal density, synaptic density, and receptors involved in learning and memory, along with downstream signaling molecules (NMDA receptor subunits GluN2A, GluN2B, and CaMKII) were investigated by immunoblotting. KEY FINDINGS: METH administration significantly extended escape latency in learning phase and reduced the number of target crossings in memory test-phase as well as decreased the expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, ßIII tubulin, and synaptophysin. MEL treatment significantly ameliorated METH-induced increased escape latency, decreased the number of target crossings and decreased expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, ßIII tubulin and synaptophysin. SIGNIFICANCE: METH administration impairs learning and memory in mice, and MEL administration restores METH-induced neuronal impairments which is probably through the changes in BDNF, NMDA receptors, TrkB receptors, CaMKII, ßIII tubulin and synaptophysin. Therefore, MEL is potentially an innovative and promising treatment for learning and memory impairment of humans.


Asunto(s)
Hipocampo/efectos de los fármacos , Melatonina/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Metanfetamina/toxicidad , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Cognición/efectos de los fármacos , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/patología
5.
Depress Res Treat ; 2018: 7343592, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29808118

RESUMEN

Major depressive disorder (MDD) is associated with changes in autonomic nervous system (ANS) and cognitive impairment. Heart rate variability (HRV) and Pulse pressure (PP) parameters reflect influences of the sympathetic and parasympathetic nervous system. Cortisol exerts its greatest effect on the hippocampus, a brain area closely related to cognitive function. This study aims to examine the effect of HRV, PPG, salivary cortisol levels, and cognitive function in MDD patients by using noninvasive techniques. We have recruited MDD patients, diagnosed based on DSM-V-TR criteria compared with healthy control subjects. Their HRV and PP were measured by electrocardiogram (ECG) and photoplethysmography (PPG). Salivary cortisol levels were collected and measured on the same day. MDD patients exhibited elevated values of mean HR, standard deviation of HR (SDHR), low frequency (LF) power, low frequency/high frequency (LF/HF) ratio, mean PP, standard deviation of pulse pressure (SDPP), and salivary cortisol levels. Simultaneously, they displayed lower values of mean of R-R intervals (mean NN), standard deviation of R-R intervals (SDNN), high frequency (HF) power, and WCST scores. Results have shown that the ANS of MDD patients were dominated by the sympathetic activity and that they have cognitive deficits especially in the domain of executive functioning.

6.
EXCLI J ; 15: 716-729, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28337103

RESUMEN

Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia.

7.
Arch Pharm Res ; 38(7): 1380-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25840686

RESUMEN

Brain aging has been associated with oxidative stress leading to inflammation and apoptosis. The protective effects and underlying mechanisms of N-benzylcinnamide (PT-3), purified from Piper submultinerve, on brains of 90-week-old Wistar rats were investigated following daily intraperitoneal injection with 1.5 mg of PT-3/kg of body weight for 15 days. PT-3 treatment improved spatial learning and memory of aged rats and caused significant changes in brain frontal cortex, hippocampus, and temporal cortex in parameters associated with oxidative stress (decreased reactive oxygen species production and iNOS and nNOS levels), inflammation (reduced levels of IL-1ß and IL-6), apoptosis (reduced levels of Bax and activated caspase-3, and elevated level of Bcl-2), and signaling pathways related to inflammation and apoptosis (decreased amounts of phospho-JNK and -p38, increased phospho-Akt level and no change in phospho-ERK1/2 content) compared to controls. PT-3 treatment also inhibited aged rat brain AChE activity. These results suggest that PT-3 with its intrinsic antioxidant and AChE inhibitory properties has therapeutic potential in ameliorating, in part, age-associated damages to the brain.


Asunto(s)
Envejecimiento/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Cinamatos/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Corteza Cerebral/metabolismo , Inhibidores de la Colinesterasa/farmacología , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Oncotarget ; 5(6): 1565-75, 2014 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-24728971

RESUMEN

Nausea is a prominent symptom and major cause of complaint for patients receiving anticancer chemo- or radiation therapy. The arsenal of anti-nausea drugs is limited, and their efficacy is questionable. Currently, the development of new compounds with anti-nausea activity is hampered by the lack of physiological correlates of nausea. Physiological correlates are needed because common laboratory rodents lack the vomiting reflex. Furthermore, nausea does not always lead to vomiting. Here, we report the results of studies conducted in four research centers to investigate whether nausea is associated with any specific thermoregulatory symptoms. Two species were studied: the laboratory rat, which has no vomiting reflex, and the house musk shrew (Suncus murinus), which does have a vomiting reflex. In rats, motion sickness was induced by rotating them in their individual cages in the horizontal plane (0.75 Hz, 40 min) and confirmed by reduced food consumption at the onset of dark (active) phase. In 100% of rats tested at three centers, post-rotational sickness was associated with marked (~1.5°C) hypothermia, which was associated with a short-lasting tail-skin vasodilation (skin temperature increased by ~4°C). Pretreatment with ondansetron, a serotonin 5-HT3 receptor antagonist, which is used to treat nausea in patients in chemo- or radiation therapy, attenuated hypothermia by ~30%. In shrews, motion sickness was induced by a cyclical back-and-forth motion (4 cm, 1 Hz, 15 min) and confirmed by the presence of retching and vomiting. In this model, sickness was also accompanied by marked hypothermia (~2°C). Like in rats, the hypothermic response was preceded by transient tail-skin vasodilation. In conclusion, motion sickness is accompanied by hypothermia that involves both autonomic and thermoeffector mechanisms: tail-skin vasodilation and possibly reduction of the interscapular brown adipose tissue activity. These thermoregulatory symptoms may serve as physiological correlates of nausea.


Asunto(s)
Regulación de la Temperatura Corporal , Hipotermia/etiología , Mareo por Movimiento/complicaciones , Náusea/etiología , Vómitos/etiología , Animales , Conducta Alimentaria , Hipotermia/tratamiento farmacológico , Hipotermia/metabolismo , Masculino , Mareo por Movimiento/metabolismo , Náusea/tratamiento farmacológico , Náusea/metabolismo , Ondansetrón/farmacología , Ratas , Ratas Wistar , Receptores de Serotonina/química , Antagonistas de la Serotonina/farmacología , Musarañas , Vasodilatación/efectos de los fármacos , Vómitos/tratamiento farmacológico , Vómitos/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 294(1): R132-41, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959705

RESUMEN

To better understand the central mechanisms that mediate increases in heart rate (HR) during psychological stress, we examined the effects of systemic and intramedullary (raphe region) administration of the serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) on cardiac changes elicited by restraint in hooded Wistar rats with preimplanted ECG telemetric transmitters. 8-OH-DPAT reduced basal HR from 356 +/- 12 to 284 +/- 12 beats/min, predominantly via a nonadrenergic, noncholinergic mechanism. Restraint stress caused tachycardia (an initial transient increase from 318 +/- 3 to 492 +/- 21 beats/min with a sustained component of 379 +/- 12 beats/min). beta-Adrenoreceptor blockade with atenolol suppressed the sustained component, whereas muscarinic blockade with methylscopolamine (50 microg/kg) abolished the initial transient increase, indicating that sympathetic activation and vagal withdrawal were responsible for the tachycardia. Systemic administration of 8-OH-DPAT (10, 30, and 100 microg/kg) attenuated stress-induced tachycardia in a dose-dependent manner, and this effect was suppressed by the 5-HT(1A) antagonist WAY-100635 (100 microg/kg). Given alone, the antagonist had no effect. Systemically injected 8-OH-DPAT (100 microg/kg) attenuated the sympathetically mediated sustained component (from +85 +/- 19 to +32 +/- 9 beats/min) and the vagally mediated transient (from +62 +/- 5 to +25 +/- 3 beats/min). Activation of 5-HT(1A) receptors in the medullary raphe by microinjection of 8-OH-DPAT mimicked the antitachycardic effect of the systemically administered drug but did not affect basal HR. We conclude that tachycardia induced by restraint stress is due to a sustained increase in cardiac sympathetic activity associated with a transient vagal withdrawal. Activation of central 5-HT(1A) receptors attenuates this tachycardia by suppressing autonomic effects. At least some of the relevant receptors are located in the medullary raphe-parapyramidal area.


Asunto(s)
Receptor de Serotonina 5-HT1A/fisiología , Estrés Psicológico/fisiopatología , Taquicardia/etiología , Taquicardia/prevención & control , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Atenolol/farmacología , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Masculino , N-Metilescopolamina/farmacología , Parasimpatolíticos/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Restricción Física , Agonistas del Receptor de Serotonina 5-HT1 , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Simpaticolíticos/farmacología , Taquicardia/fisiopatología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA