Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cells ; 10(9)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34571938

RESUMEN

Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein-protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns-but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues' main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Percas/metabolismo , Mapas de Interacción de Proteínas , Selección Genética , Transcriptoma , Animales , Genoma , Anotación de Secuencia Molecular , Especificidad de Órganos , Percas/genética
2.
Genes (Basel) ; 10(9)2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540274

RESUMEN

The pikeperch (Sander lucioperca) is a fresh and brackish water Percid fish natively inhabiting the northern hemisphere. This species is emerging as a promising candidate for intensive aquaculture production in Europe. Specific traits like cannibalism, growth rate and meat quality require genomics based understanding, for an optimal husbandry and domestication process. Still, the aquaculture community is lacking an annotated genome sequence to facilitate genome-wide studies on pikeperch. Here, we report the first highly contiguous draft genome assembly of Sander lucioperca. In total, 413 and 66 giga base pairs of DNA sequencing raw data were generated with the Illumina platform and PacBio Sequel System, respectively. The PacBio data were assembled into a final assembly size of ~900 Mb covering 89% of the 1,014 Mb estimated genome size. The draft genome consisted of 1966 contigs ordered into 1,313 scaffolds. The contig and scaffold N50 lengths are 3.0 Mb and 4.9 Mb, respectively. The identified repetitive structures accounted for 39% of the genome. We utilized homologies to other ray-finned fishes, and ab initio gene prediction methods to predict 21,249 protein-coding genes in the Sander lucioperca genome, of which 88% were functionally annotated by either sequence homology or protein domains and signatures search. The assembled genome spans 97.6% and 96.3% of Vertebrate and Actinopterygii single-copy orthologs, respectively. The outstanding mapping rate (99.9%) of genomic PE-reads on the assembly suggests an accurate and nearly complete genome reconstruction. This draft genome sequence is the first genomic resource for this promising aquaculture species. It will provide an impetus for genomic-based breeding studies targeting phenotypic and performance traits of captive pikeperch.


Asunto(s)
Genoma , Percas/genética , Animales , Proteínas de Peces/genética , Anotación de Secuencia Molecular , Percas/clasificación , Filogenia , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA