Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Brain Behav Immun ; 119: 261-271, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570102

RESUMEN

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.


Asunto(s)
Dolor Crónico , Estrógenos , Neuralgia , Neuronas , Receptores Tipo I de Factores de Necrosis Tumoral , Transducción de Señal , Animales , Neuralgia/metabolismo , Masculino , Femenino , Ratones , Estrógenos/metabolismo , Estrógenos/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Neuronas/metabolismo , Dolor Crónico/metabolismo , Transducción de Señal/fisiología , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Hiperalgesia/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
2.
Science ; 383(6685): 865-870, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386746

RESUMEN

Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions​. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.

3.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246200

RESUMEN

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Masculino , Femenino , Ratones , Animales , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Ratones Endogámicos C57BL , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas de la Mielina , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Noqueados
4.
FASEB J ; 37(12): e23283, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983957

RESUMEN

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Microglía/metabolismo
5.
Res Sq ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37674712

RESUMEN

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP) [1-4]. To test the hypothesis that supraspinal circuitry is critical to pain chronification, we studied the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that following chronic constriction injury (CCI), pain resolves in males; however, female acute pain transitions to chronic. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38αMAPK and NF-κB activation in male cortical tissue; however, p38αMAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed similar behavioral results following CCI in NexCreERT2::p38αMAPKf/f mice. Previously, we established estrogen's ability to modulate sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP [5-9]. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lend "male-like" therapeutic relief to females following CCI. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.

6.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131811

RESUMEN

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.

7.
PLoS One ; 18(2): e0279400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36735677

RESUMEN

Immunotherapy is an approved treatment option for head and neck squamous cell carcinoma (HNSCC). However, the response rate to immune checkpoint blockade is only 13% for recurrent HNSCC, highlighting the urgent need to better understand tumor-immune interplay, with the ultimate goal of improving patient outcomes. HNSCC present high local recurrence rates and therapy resistance that can be attributed to the presence of cancer stem cells (CSC) within tumors. CSC exhibit singular properties that enable them to avoid immune detection and eradication. How CSC communicate with immune cells and which immune cell types are preferentially found within the CSC niche are still open questions. Here, we used genetic approaches to specifically label CSC-derived extracellular vesicles (EVs) and to perform Sortase-mediated in vivo proximity labeling of CSC niche cells. We identified specific immune cell subsets that were selectively targeted by EVCSC and that were found in the CSC niche. Native EVCSC preferentially targeted MHC-II-macrophages and PD1+ T cells in the tumor microenvironment, which were the same immune cell subsets enriched within the CSC niche. These observations indicate that the use of genetic technologies able to track EVs without in vitro isolation are a valuable tool to unveil the biology of native EVCSC.


Asunto(s)
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas/patología , Linfocitos T/patología , Microambiente Tumoral , Línea Celular Tumoral , Recurrencia Local de Neoplasia/patología , Neoplasias de Cabeza y Cuello/patología , Células Madre Neoplásicas/metabolismo , Vesículas Extracelulares/patología
8.
Ultramicroscopy ; 247: 113696, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804612

RESUMEN

We demonstrate a combination of computational tools and experimental 4D-STEM methods to image the local magnetic moment in antiferromagnetic Fe2As with 6 angstrom spatial resolution. Our techniques utilize magnetic diffraction peaks, common in antiferromagnetic materials, to create imaging modes that directly visualize the magnetic lattice. Using this approach, we show that center-of-mass analysis can determine the local magnetization component in the plane perpendicular to the path of the electron beam. Moreover, we develop Magnstem, a quantum mechanical electron scattering simulation code, to model electron scattering of an angstrom-scale probe from magnetic materials. Using these tools, we identify optimal experimental conditions for separating weak magnetic signals from the much stronger interactions of an angstrom-scale probe with electrostatic potentials. Our techniques should be useful for characterizing the local magnetic order in systems such in thin films, interfaces, and domain boundaries of antiferromagnetic materials, which are difficult to probe with existing methods.

9.
Nat Nanotechnol ; 17(11): 1165-1170, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36316543

RESUMEN

Nanoscale spin textures, especially magnetic skyrmions, have attracted intense interest as candidate high-density and power-efficient information carriers for spintronic devices1,2. Facilitating a deeper understanding of sub-hundred-nanometre to atomic-scale spin textures requires more advanced magnetic imaging techniques3-5. Here we demonstrate a Lorentz electron ptychography method that can enable high-resolution, high-sensitivity magnetic field imaging for widely available electron microscopes. The resolution of Lorentz electron ptychography is not limited by the usual diffraction limit of lens optics, but instead is determined by the maximum scattering angle at which a statistically meaningful dose can still be recorded-this can be an improvement of up to 2-6 times depending on the allowable dose. Using FeGe as the model system, we realize a more accurate magnetic field measurement of skyrmions with an improved spatial resolution and sensitivity by also correcting the probe-damping effect from the imaging optics via Lorentz electron ptychography. This allows us to directly resolve subtle internal structures of magnetic skyrmions near the skyrmion cores, boundaries and dislocations in an FeGe single crystal. Our study establishes a quantitative, high-resolution magnetic microscopy technique that can reveal nanoscale spin textures, especially magnetization discontinuities and topological defects in nanomagnets6. The technique's high-dose efficiency should also make it well suited for the exploration of magnetic textures in electron radiation-sensitive materials such as organic or molecular magnets7.

10.
Front Immunol ; 13: 873560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693814

RESUMEN

Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-ß1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Factores de Transcripción Forkhead , Tratamiento Basado en Trasplante de Células y Tejidos , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Interferón gamma , Linfocitos T Reguladores
11.
Cells ; 11(9)2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563751

RESUMEN

Epidemiological studies reveal a correlation between air pollution exposure and gastrointestinal (GI) diseases, yet few studies have investigated the role of inhaled particulate matter on intestinal integrity in conjunction with a high-fat (HF) diet. Additionally, there is currently limited information on probiotics in mitigating air-pollutant responses in the intestines. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) and a HF diet can alter intestinal integrity and inflammation, which can be attenuated with probiotics. 4-6-w-old male C57Bl/6 mice on a HF diet (45% kcal fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg of DEP suspended in 35 µL of 0.9% sterile saline or sterile saline (CON) only twice a week for 4 w. A subset of mice was treated with 0.3 g/day of Winclove Ecologic® barrier probiotics (PRO) in drinking water throughout the duration of the study. Our results show that DEP exposure ± probiotics resulted in increased goblet cells and mucin (MUC)-2 expression, as determined by AB/PAS staining. Immunofluorescent quantification and/or RT-qPCR showed that DEP exposure increases claudin-3, occludin, zona occludens (ZO)-1, matrix metalloproteinase (MMP)-9, and toll-like receptor (TLR)-4, and decreases tumor necrosis factor (TNF)-α and interleukin (IL)-10 expression compared to CON. DEP exposure + probiotics increases expression of claudin-3, occludin, ZO-1, TNF-α, and IL-10 and decreases MMP-9 and TLR-4 compared to CON + PRO in the small intestine. Collectively, these results show that DEP exposure alters intestinal integrity and inflammation in conjunction with a HF diet. Probiotics proved fundamental in understanding the role of the microbiome in protecting and altering inflammatory responses in the intestines following exposure to inhaled DEP.


Asunto(s)
Probióticos , Emisiones de Vehículos , Adyuvantes Inmunológicos , Animales , Claudina-3 , Dieta Alta en Grasa/efectos adversos , Factores Inmunológicos , Inflamación , Intestinos , Masculino , Ratones , Ratones Endogámicos C57BL , Ocludina , Probióticos/farmacología , Factor de Necrosis Tumoral alfa
12.
Part Fibre Toxicol ; 19(1): 10, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35135577

RESUMEN

BACKGROUND: The gut microbiota plays a vital role in host homeostasis and is associated with inflammation and cardiovascular disease (CVD) risk. Exposure to particulate matter (PM) is a known mediator of inflammation and CVD and is reported to promote dysbiosis and decreased intestinal integrity. However, the role of inhaled traffic-generated PM on the gut microbiome and its corresponding systemic effects are not well-characterized. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) alters the gut microbiome and promotes microbial-related inflammation and CVD biomarkers. 4-6-week-old male C57Bl/6 mice on either a low-fat (LF, 10% fat) or high-fat (HF, 45% fat) diet were exposed via oropharyngeal aspiration to 35 µg DEP suspended in 35 µl saline or saline only (CON) 2x/week for 30 days. To determine whether probiotics could prevent diet or DEP exposure mediated alterations in the gut microbiome or systemic outcomes, a subset of animals on the HF diet were treated orally with 0.3 g/day (~ 7.5 × 108 CFU/day) of Winclove Ecologic® Barrier probiotics throughout the study. RESULTS: Our results show that inhaled DEP exposure alters gut microbial profiles, including reducing Actinobacteria and expanding Verrucomicrobia and Proteobacteria. We observed increased circulating LPS, altered circulating cytokines (IL-1α, IL-3, IL-13, IL-15, G-CSF, LIF, MIP-2, and TNF-α), and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in DEP-exposed and/or HF diet mice. Furthermore, probiotics attenuated the observed reduction of Actinobacteria and expansion of Proteobacteria in DEP-exposed and HF-diet mice. Probiotics mitigated circulating cytokines (IL-3, IL-13, G-CSF, RANTES, and TNF- α) and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in respect to DEP-exposure and/or HF diet. CONCLUSION: Key findings of this study are that inhaled DEP exposure alters small intestinal microbial profiles that play a role in systemic inflammation and early CVD biomarkers. Probiotic treatment in this study was fundamental in understanding the role of inhaled DEP on the microbiome and related systemic inflammatory and CVD biomarkers.


Asunto(s)
Enfermedades Cardiovasculares , Microbiota , Animales , Biomarcadores , Enfermedades Cardiovasculares/inducido químicamente , Citocinas , Factor Estimulante de Colonias de Granulocitos , Inflamación/inducido químicamente , Interleucina-13 , Interleucina-3 , Masculino , Ratones , Ratones Endogámicos C57BL , Material Particulado , Inhibidor 1 de Activador Plasminogénico , Trombomodulina , Emisiones de Vehículos/toxicidad
13.
Part Fibre Toxicol ; 18(1): 3, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419468

RESUMEN

BACKGROUND: Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP, suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS: Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS: Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.


Asunto(s)
Dieta Alta en Grasa , Emisiones de Vehículos , Animales , Líquido del Lavado Bronquioalveolar , Inflamación , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrógeno , Material Particulado/toxicidad , ARN Ribosómico 16S , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Emisiones de Vehículos/toxicidad
14.
Tech Vasc Interv Radiol ; 23(4): 100700, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33308584

RESUMEN

Degenerative lumbar spine disorder (DLSD) is a ubiquitously occurring event that may be induced or accelerated by multiple factors such as from overuse, trauma, genetic predisposition, nutrition deficiency, and others. While our understanding of this degenerative disorder is limited, in terms of prevention, the symptoms from DLSD can be significant and may lead to the reduction in the patient's quality of life and loss of work time. In the Global Burden of Disease Study, low back pain was ranked the highest of 291 different conditions, due to the number of years lost to disability, amounting to 83 million disability-adjusted life years lost in 2010. DLSD contains conditions involving disc degeneration, lumbar spinal stenosis, and spondylolisthesis, including symptoms ranging from low back pain to lower extremity radicular pain and weakness. In this issue, we will be discussing treatments for patients suffering with chronic low back pain from endplate disruption, utilizing basivertebral nerve radiofrequency ablation, also known as the INTRACEPT procedure. This issue will also cover minimally invasive lumbar decompression from lumbar spinal stenosis, due to contributory ligamentum flavum hypertrophy, utilizing the percutaneous image-guided lumbar decompression technique known as the MILD procedure.


Asunto(s)
Dolor Crónico/cirugía , Descompresión Quirúrgica , Dolor de la Región Lumbar/cirugía , Vértebras Lumbares/cirugía , Manejo del Dolor , Ablación por Radiofrecuencia , Radiografía Intervencional , Enfermedades de la Columna Vertebral/cirugía , Dolor Crónico/diagnóstico , Dolor Crónico/fisiopatología , Descompresión Quirúrgica/efectos adversos , Humanos , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/fisiopatología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiopatología , Manejo del Dolor/efectos adversos , Ablación por Radiofrecuencia/efectos adversos , Radiografía Intervencional/efectos adversos , Enfermedades de la Columna Vertebral/diagnóstico por imagen , Enfermedades de la Columna Vertebral/fisiopatología , Resultado del Tratamiento
15.
Ann Surg Oncol ; 27(13): 5121-5125, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32314157

RESUMEN

BACKGROUND: Multiple adjuvant therapies for melanoma have been approved since 2015 based on randomized trials demonstrating improvements in recurrence-free survival (RFS) with adjuvant therapy after surgical resection of high-risk disease. Inclusion criteria for these trials required performance of a completion lymph node dissection (CLND) for positive sentinel lymph node (pSLN) disease. OBJECTIVE: We aimed to describe current practice for adjuvant therapies in patients with pSLN without CLND (active surveillance [AS]), and to evaluate recurrence in these patients. METHODS: Melanoma patients with pSLN between 2016 and 2019 were identified at two institutions. Demographic information, disease and treatment characteristics, and recurrence details were reviewed retrospectively. Patients were stratified by recurrence and patient-, treatment- and tumor-related characteristics were compared using Fisher's exact test and t test for categorical and continuous variables, respectively. RESULTS: Overall, 245 SLN biopsies were performed, of which 36 (14.7%) were pSLN. Of 36 pSLN, 4 underwent CLND and 32 underwent AS, of whom 22 (68.8%) received adjuvant therapy with the anti-programmed death-1 (PD1) inhibitor nivolumab (16/22), anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor ipilimumab (3/22), or BRAF/MEK inhibitors (3/22). At a median follow up of 13.3 months, 7/32 (21.9%) patients on AS recurred, including 4/22 (18.2%) who received adjuvant therapy and 3/10 (30.0%) who did not. Tumor ulceration was significantly associated with recurrence. While not significant, acral lentiginous subtype appeared more common among those with recurrence. CONCLUSION: The majority (68.8%) of patients with pSLN managed without CLND were treated with adjuvant therapy. The 1-year RFS for patients managed with adjuvant therapy without CLND was 82%, which is similar to modern adjuvant therapy trials requiring CLND.


Asunto(s)
Melanoma , Ganglio Linfático Centinela , Neoplasias Cutáneas , Humanos , Escisión del Ganglio Linfático , Melanoma/patología , Melanoma/cirugía , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Estadificación de Neoplasias , Estudios Retrospectivos , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/cirugía , Biopsia del Ganglio Linfático Centinela , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/cirugía
16.
17.
Nature ; 565(7740): 468-471, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30643207

RESUMEN

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1-14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance-for example, enhancing the capacitance of a ferroelectric-dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8-12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric-dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

18.
Nano Lett ; 18(6): 3746-3751, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29775315

RESUMEN

Next-generation, atomically thin devices require in-plane, one-dimensional heterojunctions to electrically connect different two-dimensional (2D) materials. However, the lattice mismatch between most 2D materials leads to unavoidable strain, dislocations, or ripples, which can strongly affect their mechanical, optical, and electronic properties. We have developed an approach to map 2D heterojunction lattice and strain profiles with subpicometer precision and the ability to identify dislocations and out-of-plane ripples. We collected diffraction patterns from a focused electron beam for each real-space scan position with a high-speed, high dynamic range, momentum-resolved detector-the electron microscope pixel array detector (EMPAD). The resulting four-dimensional (4D) phase space data sets contain the full spatially resolved lattice information on the sample. By using this technique on tungsten disulfide (WS2) and tungsten diselenide (WSe2) lateral heterostructures, we have mapped lattice distortions with 0.3 pm precision across multimicron fields of view and simultaneously observed the dislocations and ripples responsible for strain relaxation in 2D laterally epitaxial structures.

19.
Microscopy (Oxf) ; 67(suppl_1): i150-i161, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29409049

RESUMEN

What does the diffraction pattern from a single atom look like? How does it differ from the scattering from long-range potential? With the development of new high-dynamic range pixel array detectors to measure the complete momentum distribution, these questions have immediate relevance for designing and understanding momentum-resolved imaging modes. We explore the asymptotic limits of long-range and short-range potentials. We use a simple quantum mechanical model to explain the general and asymptotic limits for the probability distribution in both real and reciprocal space. Features in the scattering potential much larger than the probe size cause the bright field (BF) disk to deflect uniformly, while features much smaller than the probe size, instead of a deflection, cause a redistribution of intensity within the BF disk. Because long-range and short-range features are encoded differently in the diffraction pattern, it is possible to separate their contributions in differential phase-contrast (DPC) or center-of-mass (CoM) imaging. The shape profiles for atomic resolution CoM imaging are dominated by the shape of the probe gradient and not the highly singular atomic potentials or their local fields. Instead, only the peak height shows an atomic number sensitivity, whose precise dependence is determined by the convergence angle. At lower convergence angles, the contrast oscillates with increasing atomic number, similar to BF imaging. The range of collection angles impacts DPC and CoM imaging differently, with CoM being more sensitive to the upper cutoff limit, while DPC is more sensitive to the lower cutoff.

20.
J Struct Biol ; 202(1): 25-34, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29221896

RESUMEN

Microcalcifications (MCs) are routinely used to detect breast cancer in mammography. Little is known, however, about their materials properties and associated organic matrix, or their correlation to breast cancer prognosis. We combine histopathology, Raman microscopy, and electron microscopy to image MCs within snap-frozen human breast tissue and generate micron-scale resolution correlative maps of crystalline phase, trace metals, particle morphology, and organic matrix chemical signatures within high grade ductal carcinoma in situ (DCIS) and invasive cancer. We reveal the heterogeneity of mineral-matrix pairings, including punctate apatitic particles (<2 µm) with associated trace elements (e.g., F, Na, and unexpectedly Al) distributed within the necrotic cores of DCIS, and both apatite and spheroidal whitlockite particles in invasive cancer within a matrix containing spectroscopic signatures of collagen, non-collagen proteins, cholesterol, carotenoids, and DNA. Among the three DCIS samples, we identify key similarities in MC morphology and distribution, supporting a dystrophic mineralization pathway. This multimodal methodology lays the groundwork for establishing MC heterogeneity in the context of breast cancer biology, and could dramatically improve current prognostic models.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mama/metabolismo , Calcinosis/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Anciano , Mama/patología , Mama/ultraestructura , Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Fenómenos Químicos , Femenino , Humanos , Mamografía , Microscopía Electrónica , Persona de Mediana Edad , Sensibilidad y Especificidad , Espectrometría por Rayos X , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA