RESUMEN
C-H bond activation reactions with transition metals typically proceed via the formation of alkane σ-complexes, where an alkane C-H σ-bond binds to the metal. Due to the weak nature of metal-alkane bonds, σ-complexes are challenging to characterize experimentally. Here, we establish the complete pathways of photochemical formation of the model σ-complex Cr(CO)5-alkane from Cr(CO)6 in octane solution and characterize the nature of its metal-ligand bonding interactions. Using femtosecond optical absorption spectroscopy, we find photoinduced CO dissociation from Cr(CO)6 to occur within the 100 fs time resolution of the experiment. Rapid geminate recombination by a fraction of molecules is found to occur with a time constant of 150 fs. The formation of bare Cr(CO)5 in its singlet ground state is followed by complexation of an octane molecule from solution with a time constant of 8.2 ps. Picosecond X-ray absorption spectroscopy at the Cr L-edge and O K-edge provides unique information on the electronic structure of the Cr(CO)5-alkane σ-complex from both the metal and ligand perspectives. Based on clear experimental observables, we find substantial destabilization of the lowest unoccupied molecular orbital upon coordination of the C-H bond to the undercoordinated Cr center in the Cr(CO)5-alkane σ-complex, and we define this as a general, orbital-based descriptor of the metal-alkane bond. Our study demonstrates the value of combining optical and X-ray spectroscopic methods as complementary tools to study the stability and reactivity of alkane σ-complexes in their role as the decisive intermediates in C-H bond activation reactions.
RESUMEN
Protons in low-barrier superstrong hydrogen bonds are typically delocalized between two electronegative atoms. Conventional methods to characterize such superstrong hydrogen bonds are vibrational spectroscopy and diffraction techniques. We introduce soft X-ray spectroscopy to uncover the electronic fingerprints for proton sharing in the protonated imidazole dimer, a prototypical building block enabling effective proton transport in biology and high-temperature fuel cells. Using nitrogen core excitations as a sensitive probe for the protonation status, we identify the X-ray signature of a shared proton in the solvated imidazole dimer in a combined experimental and theoretical approach. The degree of proton sharing is examined as a function of structural variations that modify the shape of the low-barrier potential in the superstrong hydrogen bond. We conclude by showing how the sensitivity to the quantum distribution of proton motion in the double-well potential is reflected in the spectral signature of the shared proton.
RESUMEN
Imidazole, being an amphoteric molecule, can act both as an acid and as a base. This property enables imidazole, as an essential building block, to effectively facilitate proton transport in high-temperature proton exchange membrane fuel cells and in proton channel transmembrane proteins, enabling those systems to exhibit high energy conversion yields and optimal biological function. We explore the amphoteric properties of imidazole by following the proton transfer exchange reaction dynamics with the bifunctional photoacid 7-hydroxyquinoline (7HQ). We show with ultrafast ultraviolet-mid-infrared pump-probe spectroscopy how for imidazole, in contrast to expectations based on textbook knowledge of acid-base reactivity, the preferential reaction pathway is that of an initial proton transfer from 7HQ to imidazole, and only at a later stage a transfer from imidazole to 7HQ, completing the 7HQ tautomerization reaction. An assessment of the molecular distribution functions and first-principles calculations of proton transfer reaction barriers reveal the underlying reasons for our observations.
RESUMEN
Air lasing from single ionized N_{2}^{+} molecules induced by laser filamentation in air has been intensively investigated and the mechanisms responsible for lasing are currently highly debated. We use ultrafast nitrogen K-edge spectroscopy to follow the strong field ionization and fragmentation dynamics of N_{2} upon interaction with an ultrashort 800 nm laser pulse. Using probe pulses generated by extreme high-order harmonic generation, we observe transitions indicative of the formation of the electronic ground X^{2}Σ_{g}^{+}, first excited A^{2}Π_{u}, and second excited B^{2}Σ_{u}^{+} states of N_{2}^{+} on femtosecond timescales, from which we can quantitatively determine the time-dependent electronic state population distribution dynamics of N_{2}^{+}. Our results show a remarkably low population of the A^{2}Π_{u} state, and nearly equal populations of the X^{2}Σ_{g}^{+} and B^{2}Σ_{u}^{+} states. In addition, we observe fragmentation of N_{2}^{+} into N and N^{+} on a timescale of several tens of picoseconds that we assign to significant collisional dynamics in the plasma, resulting in dissociative excitation of N_{2}^{+}.
RESUMEN
Seemingly simple yet surprisingly difficult to probe, excess protons in water constitute complex quantum objects with strong interactions with the extended and dynamically changing hydrogen-bonding network of the liquid. Proton hydration plays pivotal roles in energy transport in hydrogen fuel cells and signal transduction in transmembrane proteins. While geometries and stoichiometry have been widely addressed in both experiment and theory, the electronic structure of these specific hydrated proton complexes has remained elusive. Here we show, layer by layer, how utilizing novel flatjet technology for accurate x-ray spectroscopic measurements and combining infrared spectral analysis and calculations, we find orbital-specific markers that distinguish two main electronic-structure effects: Local orbital interactions determine covalent bonding between the proton and neigbouring water molecules, while orbital-energy shifts measure the strength of the extended electric field of the proton.
Asunto(s)
Protones , Agua , Enlace de Hidrógeno , Agua/química , Análisis Espectral , ElectricidadRESUMEN
Proton-coupled electron transfer (PCET) is the underlying mechanism governing important reactions ranging from water splitting in photosynthesis to oxygen reduction in hydrogen fuel cells. The interplay of proton and electronic charge distribution motions can vary from sequential to concerted schemes, with elementary steps occurring on ultrafast time scales. We demonstrate with a simulation study that femtosecond soft-X-ray spectroscopy provides key insights into the PCET mechanism of a photoinduced intramolecular enol* â keto* tautomerization reaction. A full quantum treatment of the electronic and nuclear dynamics of 2-(2'-hydroxyphenyl)benzothiazole upon electronic excitation reveals how spectral signatures of local excitations from core to frontier orbitals display the distinctly different stages of charge relocation for the H atom, donating, and accepting sites. Our findings indicate that ultraviolet/X-ray pump-probe spectroscopy provides a unique way to probe ultrafast electronic structure rearrangements in photoinduced chemical reactions essential to understanding the mechanism of PCET.
Asunto(s)
Hidrógeno , Protones , Transporte de Electrón , Hidrógeno/química , Agua/química , Rayos XRESUMEN
Photoacids show a strong increase in acidity in the first electronic excited state, enabling real-time studies of proton transfer in acid-base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K-edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core-to-valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomenon.
Asunto(s)
Aminas , Protones , Ácidos/química , Electrónica , Análisis EspectralRESUMEN
We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890. The high performance of the soft x-ray spectrometer is further demonstrated by comparing nitrogen K-edge absorption spectra from calcium nitrate in aqueous solution obtained with our high-order harmonic source to previous measurements performed at the electron storage ring facility BESSY II.
RESUMEN
Bifunctional or amphoteric photoacids simultaneously present donor (acidic) and acceptor (basic) properties making them useful tools to analyze proton transfer reactions. In protic solvents, the proton exchange between the acid and the base is controlled by the acidity or basicity strength and typically occurs on two different pathways known as protolysis and hydrolysis. We report here how the addition of a formate base will alter the relative importance of the possible reaction pathways of the bifunctional photoacid 7-hydroxyquinoline (7HQ), which has been recently understood to predominantly involve a hydroxide/methoxide transport mechanism between the basic proton-accepting quinoline nitrogen site toward the proton-donating OH group with a time constant of 360 ps in deuterated methanol (CD3OD). We follow the reaction dynamics by probing the IR-active marker modes of the different charged forms of photoexcited 7HQ, and of formic acid (HCOOD) in CD3OD solution. A comparison of the transient IR spectra as a function of formate concentration, and classical molecular dynamics simulations enables us to identify distinct contributions of "tight" (meaning "contact") and "loose" (i.e., "solvent-separated") 7HQ-formate reaction pairs in our data. Our results suggest that depending on the orientation of the OH group with respect to the quinoline aromatic ring system, the presence of the formate molecule in a proton relay pathway facilitates a net proton transfer from the proton-donating OH group of 7HQ-N* via the methanol/formate bridge toward the quinoline N site.
RESUMEN
X-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3d-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers. Here, we demonstrate XANES spectroscopy of molecules in solution at the nitrogen K-edge, performed at FLASH, the Free-Electron Laser (FEL) in Hamburg. A split-beam referencing scheme optimally characterizes the strong shot-to-shot fluctuations intrinsic to the process of self-amplified spontaneous emission on which most FELs are based. Due to this normalization, a sensitivity of 1% relative transmission change is achieved, limited by fundamental photon shot noise. The effective FEL bandwidth is increased by streaking the electron energy over the FEL pulse train to measure a wider spectral window without changing FEL parameters. We propose modifications to the experimental setup with the potential of improving the instrument sensitivity by two orders of magnitude, thereby exploiting the high peak fluence of FELs to enable unprecedented sensitivity for femtosecond XANES spectroscopy on liquids in the soft x-ray spectral region.
RESUMEN
Ultrafast UV-pump/soft-X-ray-probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1 Π1 excited state, with emphasis on the transient response in the soft-X-ray spectral region as described by the abâ initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K-edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I-CN bond cleavage process. The simulated UV-pump/soft-X-ray-probe spectra exhibit detailed dynamical information, including a time-domain signature for coherent vibration associated with the photogenerated CN fragment.
RESUMEN
Aqueous proton transport plays a key role in acid-base neutralization and energy transport through biological membranes and hydrogen fuel cells. Extensive experimental and theoretical studies have resulted in a highly detailed elucidation of one of the underlying microscopic mechanisms for aqueous excess proton transport, known as the von Grotthuss mechanism, involving different hydrated proton configurations with associated high fluxional structural dynamics. Hydroxide transport, with approximately 2-fold-lower bulk diffusion rates compared to those of excess protons, has received much less attention. We present femtosecond UV/IR pump-probe experiments and ab initio molecular dynamics simulations of different proton transport pathways of bifunctional photoacid 7-hydroxyquinoline (7HQ) in water/methanol mixtures. For 7HQ solvent-dependent photoacidity, free-energy-reactivity correlation behavior and quantum mechanics/molecular mechanics (QM/MM) trajectories point to a dominant OH-/CH3O- transport pathway for all water/methanol mixing ratios investigated. Our joint ultrafast infrared spectroscopic and ab initio molecular dynamics study provides conclusive evidence for the hydrolysis/methanolysis acid-base neutralization pathway, as formulated by Manfred Eigen half a century ago. Our findings on the distinctly different acid-base reactivities for aromatic hydroxyl and aromatic nitrogen functionalities suggest the usefulness of further exploration of these free-energy-reactivity correlations as a function of solvent polarity. Ultimately the determination of solvent-dependent acidities will contribute to a better understanding of proton-transport mechanisms at weakly polar surfaces and near polar or ionic regions in transmembrane proton pump proteins or hydrogen fuel cell materials.
RESUMEN
Excited state decay of 2-naphthol (2N) in halocarbon solvents has been observed to be significantly slower when compared to that of 1-naphthol (1N). In this study, we provide new physical insights behind this observation by exploring the regioselective electron transfer (ET) mechanism from photoexcited 1N and 2N to halocarbon solvents at a detailed molecular level. Using state-of-the-art electronic structure calculations, we explore several configurations of naphthol-chloroform complexes and find that the proximity of the electron-accepting chloroform molecule to the electron-rich -OH group of the naphthol is the dominant factor affecting electron transfer rates. The origin of significantly slower electron transfer rates for 2N is traced back to the notably smaller electronic coupling when the electron-accepting chloroform molecule is on top of the aromatic ring distal to the -OH group. Our findings suggest that regioselective photoinduced electron transfer could thus be exploited to control electron transfer in substituted acenes tailored for specific applications.
RESUMEN
The solvation structure of protons in aqueous media is highly relevant to electric properties and to proton transport in liquids and membranes. At ambient temperature, polar liquids display structural fluctuations on femto- to picosecond time scales with a direct impact on proton solvation. We use two-dimensional infrared (2D-IR) spectroscopy to follow proton dynamics in acetonitrile/water mixtures with the Zundel cation H5O2+ prepared in neat acetonitrile as a benchmark. The 2D-IR spectra of the proton transfer mode of H5O2+ demonstrate stochastic large-amplitude motions in the double-minimum proton potential, driven by fluctuating electric fields. In all cases, the excess proton is embedded in a water dimer, forming an H5O2+ complex as the major solvation species. This observation is rationalized by quantum mechanics/molecular mechanics molecular dynamics simulations including up to four water molecules embedded in acetonitrile. The Zundel motif interacts with its closest water neighbor in an H7O3+ unit without persistent proton localization.
RESUMEN
We demonstrate the feasibility of soft X-ray absorption spectroscopy in the water window using a table-top laser-based approach with organic molecules and inorganic salts in aqueous solution. A high-order harmonic source delivers femtosecond pulses of short wavelength radiation in the photon energy range from 220 to 450 eV. We report static soft X-ray absorption measurements in transmission on the solvated compounds O=C(NH2)2, CaCl2, and NaNO3 using flatjet technology. We monitor the absorption of the molecular samples between the carbon (â¼280 eV) and nitrogen (â¼400 eV) K-edges and compare our results with previous measurements performed at the BESSYII facility. We discuss the roles of pulse stability and photon flux in the outcome of our experiments. Our work paves the way toward table-top femtosecond, solution-phase soft X-ray absorption spectroscopy in the water window.
RESUMEN
We use N K-edge absorption spectroscopy to explore the electronic structure of the amine group, one of the most prototypical chemical functionalities playing a key role in acid-base chemistry, electron donor-acceptor interactions, and nucleophilic substitution reactions. In this study, we focus on aliphatic amines and make use of the nitrogen 1s core electron excitations to elucidate the roles of N-H σ* and N-C σ* contributions in the unoccupied orbitals. We have measured N K-edge absorption spectra of the ethylamine bases Et xNH3- x ( x = 0...3; Et- = C2H5-) and the conjugate positively charged ethylammonium cation acids Et yNH4- y+ ( y = 0...4; Et- = C2H5-) dissolved in the protic solvents ethanol and water. Upon consecutive exchange of N-H for ethyl-groups, we observe a spectral shift, a systematic decrease of the N K-edge pre-edge peak, and a major contribution in the post-edge region for the ethylamine series. Instead, for the ethylammonium ions, the consecutive exchange of N-H for ethyl groups leads to an apparent reduction of pre-edge and post-edge intensities relative to the main-edge band, without significant frequency shifts. Building on findings from our previously reported study on aqueous ammonia and ammonium ions, we can rationalize these observations by comparing calculated N K-edge absorption spectra of free and hydrogen-bonded clusters. Hydrogen bonding interactions lead only to minor spectral effects in the ethylamine series, but have a large impact in the ethylammonium ion series. Visualization of the unoccupied molecular orbitals shows the consecutive change in molecular orbital character from N-H σ* to N-C σ* in these alkylamine/alkylammonium ion series. This can act as a benchmark for future studies on chemically more involved amine compounds.
RESUMEN
X-ray absorption spectroscopy at the L-edge of 3d transition metals is widely used for probing the valence electronic structure at the metal site via 2p-3d transitions. Assessing the information contained in L-edge absorption spectra requires systematic comparison of experiment and theory. We here investigate the Cr L-edge absorption spectrum of high-spin chromium acetylacetonate CrIII(acac)3 in solution. Using a transmission flatjet enables determining absolute absorption cross sections and spectra free from X-ray-induced sample damage. We address the challenges of measuring Cr L absorption edges spectrally close to the O K absorption edge of the solvent. We critically assess how experimental absorption cross sections can be used to extract information on the electronic structure of the studied system by comparing our results of this CrIII (3d3) complex to our previous work on L-edge absorption cross sections of MnIII(acac)3 (3d4) and MnII(acac)2 (3d5). Considering our experimental uncertainties, the most insightful experimental observable for this d3(CrIII)-d4(MnIII)-d5(MnII) series is the L-edge branching ratio, and we discuss it in comparison to semiempirical multiplet theory and ab initio restricted active space calculations. We further discuss and analyze trends in integrated absorption cross sections and correlate the spectral shapes with the local electronic structure at the metal sites.
Asunto(s)
Cromo/química , Complejos de Coordinación/química , Soluciones/química , Espectroscopía de Absorción de Rayos X , Manganeso/químicaRESUMEN
The 3d transition metals play a pivotal role in many charge transfer processes in catalysis and biology. X-ray absorption spectroscopy at the L-edge of metal sites probes metal 2p-3d excitations, providing key access to their valence electronic structure, which is crucial for understanding these processes. We report L-edge absorption spectra of MnII(acac)2 and MnIII(acac)3 complexes in solution, utilizing a liquid flatjet for X-ray absorption spectroscopy in transmission mode. With this, we derive absolute absorption cross-sections for the L-edge transitions with peak magnitudes as large as 12 and 9 Mb for MnII(acac)2 and MnIII(acac)3, respectively. We provide insight into the electronic structure with ab initio restricted active space calculations of these L-edge transitions, reproducing the experimental spectra with excellent agreement in terms of shapes, relative energies, and relative intensities for the two complexes. Crystal field multiplet theory is used to assign spectral features in terms of the electronic structure. Comparison to charge transfer multiplet calculations reveals the importance of charge transfer in the core-excited final states. On the basis of our experimental observations, we extrapolate the feasibility of 3d transition metal L-edge absorption spectroscopy using the liquid flatjet approach in probing highly dilute biological solution samples and possible extensions to table-top soft X-ray sources.
RESUMEN
In a multifaceted investigation combining local soft X-ray and vibrational spectroscopic probes with ab initio molecular dynamics simulations, hydrogen-bonding interactions of two key principal amine compounds in aqueous solution, ammonia (NH3) and ammonium ion (NH4+), are quantitatively assessed in terms of electronic structure, solvation structure, and dynamics. From the X-ray measurements and complementary determination of the IR-active hydrogen stretching and bending modes of NH3 and NH4+ in aqueous solution, the picture emerges of a comparatively strongly hydrogen-bonded NH4+ ion via N-H donating interactions, whereas NH3 has a strongly accepting hydrogen bond with one water molecule at the nitrogen lone pair but only weakly N-H donating hydrogen bonds. In contrast to the case of hydrogen bonding among solvent water molecules, we find that energy mismatch between occupied orbitals of both the solutes NH3 and NH4+ and the surrounding water prevents strong mixing between orbitals upon hydrogen bonding and, thus, inhibits substantial charge transfer between solute and solvent. A close inspection of the calculated unoccupied molecular orbitals, in conjunction with experimentally measured N K-edge absorption spectra, reveals the different nature of the electronic structural effects of these two key principal amine compounds imposed by hydrogen bonding to water, where a pH-dependent excitation energy appears to be an intrinsic property. These results provide a benchmark for hydrogen bonding of other nitrogen-containing acids and bases.
RESUMEN
Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H5O2)+ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.