RESUMEN
Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.
Asunto(s)
Neoplasias de la Mama , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Biología Computacional/métodos , Metilación de ADN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Masculino , Epigénesis GenéticaRESUMEN
Uveal melanoma is the most common primary intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease, usually in the liver. When metastatic, the prognosis is poor, and few treatment options exist. Here, we investigated the feasibility of establishing patient-derived xenografts (PDXs) from a patient's tumor in order to screen for therapies that the patient could benefit from. Samples obtained from 29 primary tumors and liver metastases of uveal melanoma were grafted into SCID mice. PDX models were successfully established for 35% of primary patient tumors and 67% of liver metastases. The tumor take rate was proportional to the risk of metastases. PDXs showed the same morphology, the same GNAQ/11, BAP1, and SF3B1 mutations, and the same chromosome 3 and 8q status as the corresponding patient samples. Six PDX models were challenged with two compounds for 4 weeks. We show that, for 31% of patients with high or intermediate risk of metastasis, the timing to obtain efficacy results on PDX models derived from their primary tumors was compatible with the selection of the therapy to treat the patient after relapse. PDXs could thus be a valid tool ("avatar") to select the best personalized therapy for one third of patients that are most at risk of relapse.
Asunto(s)
Neoplasias Hepáticas , Recurrencia Local de Neoplasia , Adulto , Animales , Ratones , Humanos , Estudios de Factibilidad , Xenoinjertos , Ratones SCID , Neoplasias Hepáticas/genética , RecurrenciaRESUMEN
Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.
Asunto(s)
Melanoma , Multiómica , Humanos , Melanoma/patología , Melanocitos/metabolismo , ADN , Antígenos de Neoplasias/genéticaRESUMEN
BACKGROUND: The immune landscape of uveal melanoma liver metastases (UMLM) has not been sufficiently studied. METHODS: Immune cell infiltrates (ICIs), PD-1 and PD-L1 were characterised in 62 UMLM and 28 primary uveal melanomas (PUM). ICI, PD-1 and PD-L1 were scored as: (1) % tumoral area occupied by tumour-infiltrating lymphocytes or macrophages (TILs, TIMs) and (2) % perTumoral (perT) area. ICIs and other variables including histopathologic growth patterns (HGPs), replacement and desmoplastic, of UMLM were analysed for their prognostic value. RESULTS: ICIs recognised by haematoxylin-eosin-saffron (HES) and IHC (e.g., T cells (CD3), B cells (CD20). Macrophages (CD68), (CD163), were primarily localised to the perT region in PUM and UMLM and were more conspicuous in UMLM. HES, CD3, CD4, FoxP3, CD8, CD20, PD-1 TILs were scant (<5%). TIMs were more frequent, particularly in UMLM than in PUM. Both CD68+ TIMs and HGPs remained significant on multivariate analysis, influencing overall (OS) and metastasis-specific overall survival (MSOS). CD68 + , CD163+ and CD20+ perT infiltrates in UMLM predicted increased OS and MSOS on univariate analysis. CONCLUSIONS: TILs and PD-L1 have no predictive value in PUM or UMLM. CD68+ and CD163+TIMs, CD20+ perT lymphocytes, and HGPs are important prognostic factors in UMLMs.
Asunto(s)
Neoplasias Hepáticas , Melanoma , Humanos , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Melanoma/patología , Neoplasias Hepáticas/patología , Linfocitos Infiltrantes de Tumor , Pronóstico , Biomarcadores de Tumor/análisisRESUMEN
The aggressive basal/squamous (Ba/Sq) bladder cancer (BLCA) subtype is often diagnosed at the muscle-invasive stage and can progress to the sarcomatoid variant. Identification of molecular changes occurring during progression from non-muscle-invasive BLCA (NMIBC) to Ba/Sq muscle-invasive BLCA (MIBC) is thus challenging in human disease. We used the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model of Ba/Sq MIBC to study longitudinally the molecular changes leading to the Ba/Sq phenotype and to the sarcomatoid variant using IHC and microdissection followed by RNA-seq at all stages of progression. A shift to the Ba/Sq phenotype started in early progression stages. Pathway analysis of gene clusters with coordinated expression changes revealed Shh signaling loss and a shift from fatty acid metabolism to glycolysis. An upregulated cluster, appearing early in carcinogenesis, showed relevance to human disease, identifying NMIBC patients at risk of progression. Similar to the human counterpart, sarcomatoid BBN tumors displayed a Ba/Sq phenotype and epithelial-mesenchymal transition (EMT) features. An EGFR/FGFR1 signaling switch occurred with sarcomatoid dedifferentiation and correlated with EMT. BLCA cell lines with high EMT were the most sensitive to FGFR1 knockout and resistant to EGFR knockout. Taken together, these findings provide insights into the underlying biology of Ba/Sq BLCA progression and sarcomatoid dedifferentiation with potential clinical implications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Carcinoma de Células Escamosas , Sarcoma , Neoplasias de los Tejidos Blandos , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Humanos , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Carcinogénesis/genética , Receptores ErbBRESUMEN
Breast cancer is composed of distinct subgroups, triple-negative breast cancer (TNBC), human epidermal growth factor receptor-2 (HER2), luminal A, and luminal B, which are associated with different prognosis. MEP50 is the main partner of the arginine methyltransferase PRMT5 required for its enzymatic activity. Here, we examined MEP50 expression in the different breast cancer subgroups from the transcriptomic data obtained on human breast cancer samples and on normal breast tissues in two cohorts (Curie, n = 141; The Cancer Genome Atlas-TCGA, n = 788). We observed higher levels of MEP50 mRNA in TNBC (Curie, n = 41; TCGA, n = 106) compared to the other breast cancer subgroups and normal breast tissues. Using an online KM-plotter database, which allows survival analyses in a larger number of breast cancer patients, we found that high MEP50 mRNA levels were associated with a more favorable recurrence-free survival (RFS) in TNBC (n = 953, p = 1.2 × 10-4) and luminal B (n = 1353, p = 0.013) tumors, whereas high PRMT5 mRNA levels were associated with worse RFS in these two subgroups (TNBC: n = 442, p = 1.0 × 10-4; luminal B: n = 566, p = 6.8 × 10-3). We next determined the expression and the subcellular localization of MEP50 protein by immunohistochemistry (IHC) in our Curie cohort of breast cancer (n = 94) and normal tissues (n = 7) using a validated MEP50 antibody. MEP50 was more expressed in breast tumors compared to normal breast tissues (p = 0.02). MEP50 was more localized to the cytosol in breast cancer cells compared to normal breast tissue (p = 4 × 10-4), and was more found at the plasma membrane in normal tissues compared to breast tumors (p = 0.01). We also evaluated PRMT5 activity by IHC in our Curie cohort using a validated antibody (H4R3me2s) detecting histone H4 symmetrically dimethylated on Arg3. High levels of H4R3me2s were found in normal breast tissues, whereas the lowest levels of H4R3me2s were observed in TNBC and HER2 breast cancer subgroups. Altogether, our study reports the expression of the PRMT5 cofactor (MEP50) and substrate (H4R3me2s) in breast cancer and highlights the association of PRMT5 and MEP50 mRNA with prognosis in luminal B and TNBC breast cancer subgroups and certain TNBC subtypes.
RESUMEN
Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs.
Asunto(s)
Centrosoma , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Línea Celular , Centrosoma/metabolismo , Centrosoma/patología , Femenino , Humanos , Neoplasias Ováricas/patologíaRESUMEN
BACKGROUND: High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS: We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS: We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS: Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment.
Asunto(s)
Neuroblastoma , Transcriptoma , Animales , Niño , Ecosistema , Humanos , Ratones , Recurrencia Local de Neoplasia , Neuroblastoma/patología , Microambiente Tumoral/genéticaRESUMEN
Histórico -O tratamento de pacientes com lombalgia crônica (LC) em muitos países, incluindo o Brasil, é um grande desafio no nível de atendimento primário e especializado. Além disso, as informações sobre epidemiologia e tratamento de pacientes com LC são escassas. O objetivo principal desta revisão semi-sistemática foi a construção de evidências locais sobre a prevalência e o padrão de tratamento da LC. Métodos: Esta revisão semi-sistemática utilizou Medline, Embase e Biosis via plataforma Ovid e recursos adicionais (Google, Google Scholar, Banco de dados de incidência e prevalência, Organização Mundial da Saúde, Ministério da Saúde do Brasil e informações anedóticas de especialistas locais) para identificar literatura relevante entre 2002 e 2020 para mapear a jornada do paciente. Artigos de texto completos e originais do Brasil em inglês contendo dados sobre pontos de contato predefinidos na jornada do paciente (conscientização, triagem, diagnóstico, tratamento, adesão e controle) foram selecionados. Os dados foram obtidos usando uma média simples ou ponderada, conforme aplicável para os componentes da jornada do paciente. Resultados: De 297 registros, incluindo os fornecidos por especialistas locais, oito estudos foram incluídos para análise. A conscientização da LC e da LC-NeP foi de 30,4% e 12%, respetivamente. De acordo com estudos publicados, a adesão e o controle dos sintomas dos pacientes foram estimados com percentual semelhante de 38% e 18%, respetivamente para a LC e a LC-NeP. A prevalência de LC-NeP (3,6%) foi menor que a de LC (20,6%). Com exceção de uma porcentagem comparável da população tratada, para LC (39,1%) e LC-NeP (38%), a porcentagem de pontos de contato restantes foi maior no caso de LC do que no LC-NeP, o que implicava uma melhora no trajeto do paciente para a LC. Conclusão: O estudo destaca a necessidade de melhorar os resultados dos pacientes em nível nacional, medindo esses pontos de contato da jornada do paciente. O resultado deste estudo baseado em evidências é importante para preencher a lacuna de conhecimento do paciente com LC. Portanto, recomenda-se garantir a educação médica contínua, a conscientização do paciente e a restruturação do sistema de saúde brasileiro, ao mesmo tempo em que adota novas práticas sobre o gerenciamento da dor. [au]
Background: Managing patients with chronic low back pain (CLBP) in many countries, including Brazil, is a major challenge at the primary and specialty care level. Moreover, the information about epidemiology and patient management with CLBP is sparse. The primary objective of this semi-systematic review was to build local evidence about the prevalence and management pattern of CLBP. Methods: This semi-systematic review used Medline, Embase, and Biosis via Ovid the platform and additional resources (Google, Google Scholar, Incidence and Prevalence Database, World Health Organization, Brazilian Ministry of Health, and anecdotal information from local experts) to identify relevant literature between 20022020 to map the patient journey. Original full-text articles from Brazil in English containing data on pre-defined patient journey touchpoints (awareness, screening, diagnosis, treatment, adherence, and control) were screened. Data were synthesized using a simple or weighted mean, as applicable for patient journey components. Results. Of 297 records including those provided by local experts, eight studies were included for analysis. Awareness of CLBP and CLBP-NeP was 30.4% and 12%, respectively. According to published studies, adherence and symptoms control of patients was estimated with a similar percentage of 38% and 18%, respectively for CLBP and CLBP-NeP. CLBP-NeP prevalence (3.6%) was lower than that of CLBP (20.6%). Except for a comparable percentage of the treated population, for CLBP (39.1%) and CLBP-NeP (38%), the percentage of remaining touchpoints are higher in the case of CLBP than in CLBP-NeP, implying an improved patient journey for CLBP. Conclusion: The study highlights the usefulness to improve patient outcomes at the national level by measuring these mapping patient journey touchpoints. The outcome of this evidence-based study was fruitful to bridges the know-do gap in CLBP patients. Therefore, it is recommended to ensure continuing medical education, patient awareness, and health system preparedness while embracing the emerging insights on pain management. [au]
RESUMEN
Tumor-associated macrophages (TAM) play a detrimental role in triple-negative breast cancer (TNBC). In-depth analysis of TAM characteristics and interactions with stromal cells, such as cancer-associated fibroblast (CAF), could provide important biological and therapeutic insights. Here we identify at the single-cell level a monocyte-derived STAB1+TREM2high lipid-associated macrophage (LAM) subpopulation with immune suppressive capacities that is expanded in patients resistant to immune checkpoint blockade (ICB). Genetic depletion of this LAM subset in mice suppressed TNBC tumor growth. Flow cytometry and bulk RNA sequencing data demonstrated that coculture with TNBC-derived CAFs led to reprogramming of blood monocytes towards immune suppressive STAB1+TREM2high LAMs, which inhibit T-cell activation and proliferation. Cell-to-cell interaction modeling and assays in vitro demonstrated the role of the inflammatory CXCL12-CXCR4 axis in CAF-myeloid cell cross-talk and recruitment of monocytes in tumor sites. Altogether, these data suggest an inflammation model whereby monocytes recruited to the tumor via the CAF-driven CXCL12-CXCR4 axis acquire protumorigenic LAM capacities to support an immunosuppressive microenvironment. SIGNIFICANCE: This work identifies a novel lipid-associated macrophage subpopulation with immune suppressive functions, offering new leads for therapeutic interventions in triple-negative breast cancer.
Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias de la Mama Triple Negativas , Animales , Fibroblastos Asociados al Cáncer/patología , Moléculas de Adhesión Celular Neuronal , Línea Celular Tumoral , Fibroblastos/patología , Humanos , Inhibidores de Puntos de Control Inmunológico , Lípidos , Macrófagos , Ratones , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/genéticaRESUMEN
The replacement histopathologic growth pattern (rHGP) in melanoma liver metastases connotes an aggressive phenotype (vascular co-option; angiotropic extravascular migratory spread) and adverse prognosis. Herein, replacement and desmoplastic HGP (dHGP) were studied in uveal melanoma liver metastases (MUM). In particular, L1CAM and a "laminin vascular network" were detected at the advancing front of 14/20 cases (p = 0.014) and 16/20 cases (p = 6.4e-05) rHGPs, respectively, but both were absent in the dHGP (8/8 cases) (p = 0.014, and p = 6.3e-05, respectively). L1CAM highlighted progressive extension of angiotropic melanoma cells along sinusoidal vessels in a pericytic location (pericytic mimicry) into the hepatic parenchyma. An inverse relationship between L1CAM expression and melanin index (p = 0.012) suggested differentiation toward an amelanotic embryonic migratory phenotype in rHGP. Laminin labeled the basement membrane zone interposed between sinusoidal vascular channels and angiotropic melanoma cells at the advancing front. Other new findings: any percentage of rHGP and pure rHGP had a significant adverse effect on metastasis-specific overall survival (p = 0.038; p = 0.0064), as well as predominant rHGP (p = 0.0058). Pure rHGP also was associated with diminished metastasis-free survival relative to dHGP (p = 0.040), possibly having important implications for mechanisms of tumor spread. In conclusion, we report for the first time that L1CAM and a laminin vascular network are directly involved in this high-risk replacement phenotype. Further, this study provides more detailed information about the adverse prognostic effect of the rHGP in MUM.
Asunto(s)
Neoplasias Hepáticas , Melanoma , Molécula L1 de Adhesión de Célula Nerviosa , Neoplasias de la Úvea , Humanos , Laminina , Melaninas , Melanoma/metabolismoRESUMEN
Macrophage infiltration is a hallmark of solid cancers, and overall macrophage infiltration correlates with lower patient survival and resistance to therapy. Tumor-associated macrophages, however, are phenotypically and functionally heterogeneous. Specific subsets of tumor-associated macrophage might be endowed with distinct roles on cancer progression and antitumor immunity. Here, we identify a discrete population of FOLR2+ tissue-resident macrophages in healthy mammary gland and breast cancer primary tumors. FOLR2+ macrophages localize in perivascular areas in the tumor stroma, where they interact with CD8+ T cells. FOLR2+ macrophages efficiently prime effector CD8+ T cells ex vivo. The density of FOLR2+ macrophages in tumors positively correlates with better patient survival. This study highlights specific roles for tumor-associated macrophage subsets and paves the way for subset-targeted therapeutic interventions in macrophages-based cancer therapies.
Asunto(s)
Neoplasias de la Mama , Macrófagos , Mama/inmunología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos , Femenino , Receptor 2 de Folato , Humanos , Linfocitos Infiltrantes de Tumor , PronósticoRESUMEN
Chordomas are rare neoplasms characterized by a high recurrence rate and a poor long-term prognosis. Considering their chemo-/radio-resistance, alternative treatment strategies are strongly required, but their development is limited by the paucity of relevant preclinical models. Mutations affecting genes of the SWI/SNF complexes are frequently found in chordomas, suggesting a potential therapeutic effect of epigenetic regulators in this pathology. Twelve PDX models were established and characterized on histological and biomolecular features. Patients whose tumors were able to grow into mice had a statistically significant lower progression-free survival than those whose tumors did not grow after in vivo transplantation (p = 0.007). All PDXs maintained the same histopathological features as patients' tumors. Homozygous deletions of CDKN2A/2B (58.3%) and PBRM1 (25%) variants were the most common genomic alterations found. In the tazemetostat treated PDX model harboring a PBRM1 variant, an overall survival of 100% was observed. Our panel of chordoma PDXs represents a useful preclinical tool for both pharmacologic and biological assessments. The first demonstration of a high antitumor activity of tazemetostat in a PDX model harboring a PBRM1 variant supports further evaluation for EZH2-inhibitors in this subgroup of chordomas.
RESUMEN
Identifying new therapeutic strategies for triple-negative breast cancer (TNBC) patients is a priority as these patients are highly prone to relapse after chemotherapy. Here, we found that protein arginine methyltransferase 1 (PRMT1) is highly expressed in all breast cancer subtypes. PRMT1 depletion decreases cell survival by inducing DNA damage and apoptosis in various breast cancer cell lines. Transcriptomic analysis and chromatin immunoprecipitation revealed that PRMT1 regulates the epidermal growth factor receptor (EGFR) and the Wnt signaling pathways, reported to be activated in TNBC. PRMT1 enzymatic activity is also required to stimulate the canonical Wnt pathway. Type I PRMT inhibitors decrease breast cancer cell proliferation and show anti-tumor activity in a TNBC xenograft model. These inhibitors display synergistic interactions with some chemotherapies used to treat TNBC patients as well as erlotinib, an EGFR inhibitor. Therefore, targeting PRMT1 in combination with these chemotherapies may improve existing treatments for TNBC patients.
RESUMEN
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Asunto(s)
Células Fotorreceptoras Retinianas Conos/patología , Células Ganglionares de la Retina/metabolismo , Neoplasias de la Retina/clasificación , Retinoblastoma/clasificación , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Desdiferenciación Celular/genética , Preescolar , Metilación de ADN , Femenino , Expresión Génica , Heterogeneidad Genética , Humanos , Lactante , Masculino , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Metástasis de la Neoplasia , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/patología , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologíaRESUMEN
Malignant adenomyoepithelioma (AME) of the breast is an exceptionally rare form of breast cancer, with a significant metastatic potential. Chemotherapy has been used in the management of advanced AME patients, however the majority of treatments are not effective. Recent studies report recurrent mutations in the HRAS Q61 hotspot in small series of AMEs, but there are no preclinical or clinical data showing H-Ras protein as a potential therapeutic target in malignant AMEs. We performed targeted sequencing of tumours' samples from new series of 13 AMEs, including 9 benign and 4 malignant forms. Samples from the breast tumour and the matched axillary metastasis of one malignant HRAS mutated AME were engrafted and two patient-derived xenografts (PDX) were established that reproduced the typical AME morphology. The metastasis-derived PDX was treated in vivo by different chemotherapies and a combination of MEK and BRAF inhibitors (trametinib and dabrafenib). All malignant AMEs presented a recurrent mutation in the HRAS G13R or G12S hotspot. Mutation of PIK3CA were found in both benign and malignant AMEs, while AKT1 mutations were restricted to benign AMEs. Treatment of the PDX by the MEK inhibitor trametinib, resulted in a marked anti-tumor activity, in contrast to the BRAF inhibitor and the different chemotherapies that were ineffective. Overall, these findings further expand on the genetic features of AMEs and suggest that patients carrying advanced HRAS-mutated AMEs could potentially be treated with MEK inhibitors.
Asunto(s)
Adenomioepitelioma/genética , Neoplasias de la Mama/genética , Mutación Puntual , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenomioepitelioma/tratamiento farmacológico , Adenomioepitelioma/patología , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Femenino , Humanos , Imidazoles/uso terapéutico , Persona de Mediana Edad , Oximas/uso terapéutico , Mutación Puntual/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridonas/uso terapéutico , Pirimidinonas/uso terapéuticoRESUMEN
Effective biomarkers predictive of the response to treatments are key for precision medicine. This study identifies the staining pattern of the centromeric histone 3 variant, CENP-A, as a predictive biomarker of locoregional disease curability by chemoradiation therapy. We compared by imaging the subnuclear distribution of CENP-A in normal and tumoral tissues, and in a retrospective study in biopsies of 62 locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated by chemoradiation therapy. We looked for predictive factors of locoregional disease control and patient's survival, including CENP-A patterns, Ki67, HPV status and anisokaryosis. In different normal tissues, we reproducibly found a CENP-A subnuclear pattern characterized by CENP-A clusters both localized at the nuclear periphery and regularly spaced. In corresponding tumors, both features are lost. In locally advanced HNSCC, a specific CENP-A pattern identified in pretreatment biopsies predicts definitive locoregional disease control after chemoradiation treatment in 96% (24/25) of patients (OR = 17.6 CI 95% [2.6; 362.8], p = 0.002), independently of anisokaryosis, Ki67 labeling or HPV status. The characteristics of the subnuclear pattern of CENP-A in cell nuclei revealed by immunohistochemistry could provide an easy to use a reliable marker of disease curability by chemoradiation therapy in locally advanced HNSCC patients.
RESUMEN
Significant rational is available for specific targeting of PI3K/AKT/mTOR pathway in the treatment of non-small cell lung cancer (NSCLC). However, almost all clinical trials that have evaluated Pi3K pathway-based monotherapies/combinations did not observe an improvement of patient's outcome. The aim of our study was therefore to define combination of treatment based on the determination of predictive markers of resistance to the mTORC1 inhibitor RAD001/Everolimus. An in vivo study showed high efficacy of RAD001 in NSCLC Patient-Derived Xenografts (PDXs). When looking at biomarkers of resistance by RT-PCR study, three genes were found to be highly expressed in resistant tumors, i.e., PLK1, CXCR4, and AXL. We have then focused our study on the combination of RAD001 + Volasertib, a PLK1 inhibitor, and observed a high antitumor activity of the combination in comparison to each monotherapy; similarly, a clear synergistic effect between the two compounds was found in an in vitro study. Pharmacodynamics study demonstrated that this synergy was due to (1) tumor vascularization decrease, increase of the HIF1 protein expression and decrease of the intracellular pH, and (2) decrease of the Carbonic Anhydrase 9 (CAIX) protein that could not correct intracellular acidosis. In conclusion, all these preclinical data strongly suggest that the inhibition of mTORC1 and PLK1 proteins may be a promising therapeutic approach for NSCLC patients.
RESUMEN
The anti-Müllerian hormone (AMH) belongs to the TGF-ß family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues. By performing ISH on tissue microarray of solid tumor samples AMHRII mRNA was unexpectedly detected in several non-gynecological primary cancers including lung, breast, head and neck, and colorectal cancers. AMHRII protein expression, evaluated by immunohistochemistry (IHC) was detected in approximately 70% of epithelial ovarian cancers. Using the same IHC protocol on more than 900 frozen samples covering 18 different cancer types we detected AMHRII expression in more than 50% of hepato-carcinomas, colorectal, lung, and renal cancer samples. AMHRII expression was not observed in neuroendocrine lung tumor samples nor in non-Hodgkin lymphoma samples. Complementary analyses by immunofluorescence and flow cytometry confirmed the detection of AMHRII on a panel of ovarian and colorectal cancers displaying comparable expression levels with mean values of 39,000 and 50,000 AMHRII receptors per cell, respectively. Overall, our results suggest that this embryonic receptor could be a suitable target for treating AMHRII-expressing tumors with an anti-AMHRII selective agent such as murlentamab, also named 3C23K or GM102. This potential therapeutic intervention was confirmed in vivo by showing antitumor activity of murlentamab against AMHRII-expressing colorectal cancer and hepatocarcinoma Patient-Derived tumor Xenografts (PDX) models.