Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Adv Mater ; : e2404174, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896111

RESUMEN

Orbitronic devices operate by manipulating orbitally polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in a ferromagnet such as Ni and converted into ultrafast charge currents via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitters based on Ni is still much weaker than that of the typical spintronic terahertz emitter. Here, we report a more efficient light-induced generation of orbital current from a CoPt alloy, and the terahertz emission from CoPt/Cu/MgO is comparable to that of benchmark spintronic terahertz emitters. By varying the composition of the CoPt alloy, the thickness of Cu, and the capping layer, we confirm that THz emission primarily originates from the orbital accumulation generated within CoPt, propagating through Cu, followed by subsequent orbital-to-charge conversion due to the inverse orbital Rashba-Edelstein effect at the Cu/MgO interface. This study provides strong evidence for the efficient orbital current generation in CoPt alloy, paving the way for efficient orbital terahertz emitters. This article is protected by copyright. All rights reserved.

2.
Nano Lett ; 24(23): 6931-6938, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804717

RESUMEN

Spin-orbit torque magnetic random access memory (SOT-MRAM) has great promise in high write speed and low power consumption. Mo can play a vital role in constructing a CoFeB/MgO-based MRAM cell because of its ability to enhance the perpendicular magnetic anisotropy (PMA), thermal tolerance, and tunneling magnetoresistance. However, Mo is often considered as a less favorable candidate among SOT materials because of its weak spin-orbit coupling. In this study, we experimentally investigate the SOT efficiencies in Mo/CoFeB/MgO heterostructures over a wide range of Mo thicknesses and temperature. Decent damping-like SOT efficiency |ξDL| = 0.015 ± 0.001 and field-like SOT efficiency |ξFL| = 0.050 ± 0.001 are found in amorphous Mo. The ξFL/ξDL ratio is greater than 3. Furthermore, efficient current-induced magnetization switching is demonstrated with the critical current density comparable with heavy metal Ir and W. Our work reveals new understanding and possibilities for Mo as both an SOT source component and PMA buffer layer in the implementation of SOT-MRAMs.

3.
Nat Commun ; 14(1): 5173, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620355

RESUMEN

Two-dimensional (2D) ferromagnetic materials with unique magnetic properties have great potential for next-generation spintronic devices with high flexibility, easy controllability, and high heretointegrability. However, realizing magnetic switching with low power consumption at room temperature is challenging. Here, we demonstrate the room-temperature spin-orbit torque (SOT) driven magnetization switching in an all-van der Waals (vdW) heterostructure using an optimized epitaxial growth approach. The topological insulator Bi2Te3 not only raises the Curie temperature of Fe3GeTe2 (FGT) through interfacial exchange coupling but also works as a spin current source allowing the FGT to switch at a low current density of ~2.2×106 A/cm2. The SOT efficiency is ~2.69, measured at room temperature. The temperature and thickness-dependent SOT efficiency prove that the larger SOT in our system mainly originates from the nontrivial topological origin of the heterostructure. Our experiments enable an all-vdW SOT structure and provides a solid foundation for the implementation of room-temperature all-vdW spintronic devices in the future.

4.
ACS Appl Mater Interfaces ; 15(19): 23888-23898, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37130032

RESUMEN

Broadband spintronic terahertz (THz) radiation can be efficiently generated by spin-to-charge current conversion in a ferromagnetic/nonmagnetic heterostructure. There had been many studies on realizing the enhancement or the modulation of spintronic terahertz waves. However, reported devices so far focus on implementing certain specific modulation methods, either related to the spintronic stacks or related to the metamaterial structures. In this study, a set of femtosecond laser-driven versatile spintronic terahertz devices are proposed by integrating meta-antenna structures with W/CoFeB/Pt nanolayer stacks. These monolithic integrated devices exhibit spintronic terahertz wave emission, spectral modulation, and polarization manipulation simultaneously. The terahertz pulses are generated within the ferromagnetic heterostructure interfaces and transmitted along the metallic structures, leading to the modulation of the spintronic terahertz waves. Results have shown that the center-frequency shift is up to 140 GHz and the value of ellipticity can reach 0.6, demonstrating a set of integrated and efficient spintronic terahertz devices to modulate the emitted wave. In addition, compared with the slotline antenna, the maximum peak value of the bandpass band is enhanced up to 1.63 times by carefully designing the metamaterial structure. The spintronic meta-antenna array proposed here paves an integrated way for the manipulation of spintronic terahertz optoelectronic devices.

5.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120587

RESUMEN

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

6.
ACS Appl Mater Interfaces ; 14(28): 32646-32656, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35738005

RESUMEN

Flexible polarization control of the terahertz wave in the wide bandwidth is crucial for numerous applications, such as terahertz communication, material characterization, imaging, and biosensing diagnosis. However, this promise is impeded by the operating bandwidth of circular polarization states, control modes, and the efficiency of the regulation. Here, we report a spintronic terahertz emitter integrated with phase complementary elements, consisting of a liquid crystal and metasurface, to achieve broadband polarization control with high flexibility. This strategy allows the broadband conversion between linear, elliptical, and circular polarization by changing the rotation angle to modulate the space-variant Pancharatnam-Berry phase. The device is characterized with a terahertz time-domain spectroscopy system, demonstrating that the ellipticity of the circular polarization state could keep greater than 0.9 in 0.60-0.99 THz. In the case of an external electro-magnetic field, further polarization modulation experiments are carried out to provide multiple conversion approaches for multi-azimuth. We first propose a method of full broadband polarization state control of the terahertz emitter based on Pancharatnam-Berry phase modulation and an external electro-magnetic field. We believe that such integrated devices with broadband working bandwidth and multiple control modes will make valuable contributions to the development and multi-scene applications of ultrafast terahertz technologies.

7.
Adv Mater ; 34(9): e2106172, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34816497

RESUMEN

Future information technologies for low-dissipation quantum computation, high-speed storage, and on-chip communication applications require the development of atomically thin, ultracompact, and ultrafast spintronic devices in which information is encoded, stored, and processed using electron spin. Exploring low-dimensional magnetic materials, designing novel heterostructures, and generating and controlling ultrafast electron spin in 2D magnetism at room temperature, preferably in the unprecedented terahertz (THz) regime, is in high demand. Using THz emission spectroscopy driven by femtosecond laser pulses, optical THz spin-current bursts at room temperature in the 2D van der Waals ferromagnetic Fe3 GeTe2 (FGT) integrated with Bi2 Te3 as a topological insulator are successfully realized. The symmetry of the THz radiation is effectively controlled by the optical pumping incidence and external magnetic field directions, indicating that the THz generation mechanism is the inverse Edelstein effect contributed spin-to-charge conversion. Thickness-, temperature-, and structure-dependent nontrivial THz transients reveal that topology-enhanced interlayer exchange coupling increases the FGT Curie temperature to room temperature, which provides an effective approach for engineering THz spin-current pulses. These results contribute to the goal of all-optical generation, manipulation, and detection of ultrafast THz spin currents in room-temperature 2D magnetism, accelerating the development of atomically thin high-speed spintronic devices.

8.
Mater Horiz ; 8(3): 854-868, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821318

RESUMEN

Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.

9.
J Phys Condens Matter ; 33(14)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33498033

RESUMEN

Wannier functions have been widely applied in the study of topological properties and Floquet-Bloch bands of materials. Usually, the real-space Wannier functions are linked to thek-space Hamiltonian by two types of Fourier transform (FT), namely lattice-gauge FT (LGFT) and atomic-gauge FT (AGFT), but the differences between these two FTs on Floquet-Bloch bands have rarely been addressed. Taking monolayer graphene as an example, we demonstrate that LGFT gives different topological descriptions on the Floquet-Bloch bands for the structurally equivalent directions which are obviously unphysical, while AGFT is immune to this dilemma. We introduce the atomic-laser periodic effect to explain the different Floquet-Bloch bands between the LGFT and AGFT. Using AGFT, we showed that linearly polarized laser could effectively manipulate the properties of the Dirac fermions in graphene, such as the location, generation and annihilation of Dirac points. This proposal offers not only deeper understanding on the role of Wannier functions in solving the Floquet systems, but also a promising platform to study the interaction between the time-periodic laser field and materials.

10.
Nanotechnology ; 32(10): 105201, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33217749

RESUMEN

Recently emerging spintronic terahertz (THz) emitters, featuring many appreciable merits such as low-cost, high efficiency, ultrabroadband, and ease of integration, offer multifaceted capabilities not only in understanding the fundamental ultrafast magnetism physics but also for exploring multifarious practical applications. Integration of various flexible and tunable functions at the source such as polarization manipulation, amplitude tailoring, phase modulation, and radiation beam steering with the spintronic THz emitters and their derivatives can yield more compact and elegant devices. Here, we demonstrate a monolithic metamaterial integrated onto a W/CoFeB/Pt THz nanoemitter for a purpose-designed functionality of the electromagnetically induced transparency analog. Through elaborate engineering the asymmetry degree and geometric parameters of the metamaterial structure, we successfully verified the feasibility of monolithic modulations for the radiated THz waves. The integrated device was eventually compared with a set of stand-alone metamaterial positioning scenarios, and the negligible frequency difference between two of the positioning schemes further manifests almost an ideal realization of the proposed monolithic integrated metamaterial device with a spintronic THz emitter. We believe that such adaptable and scalable devices may make valuable contributions to the designable spintronic THz devices with pre-shaping THz waves and enable chip-scale spintronic THz optics, sensing, and imaging.

11.
ACS Appl Mater Interfaces ; 12(32): 35895-35902, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32643363

RESUMEN

Label-free biosensors operating within the terahertz (THz) spectra have helped to unlock a myriad of potential THz applications, ranging from biomaterial detection to point-of-care diagnostics. However, the THz wave diffraction limit and the lack of emitter-integrated THz biosensors hinder the proliferation of high-resolution near-field label-free THz biosensing. Here, a monolithic THz emission biosensor (TEB) is achieved for the first time by integrating asymmetric double-split ring resonator metamaterials with a ferromagnetic heterojunction spintronic THz emitter. This device exhibits an electromagnetically induced transparency window with a resonance frequency of 1.02 THz and a spintronic THz radiation source with a bandwidth of 900 GHz, which are integrated on a fused silica substrate monolithically for the first time. It was observed that the resonance frequency experienced a red-shift behavior with increasing concentration of HeLa cells and Pseudomonas because of the strong interaction between the spintronic THz radiation and the biological samples on the metamaterials. The spatial frequency red-shift resolution is ∼0.01 THz with a Pseudomonas concentration increase from ∼0.5 × 104 to ∼1 × 104/mL. The monolithic THz biosensor is also sensitive to the sample concentration distribution with a 15.68 sensitivity under a spatial resolution of 500 µm, which is determined by the infrared pump light diffraction limit. This TEB shows great potential for high-resolution near-field biosensing applications of trace biological samples.


Asunto(s)
Imanes/química , Imágen por Terahertz/métodos , Simulación por Computador , Células HeLa , Humanos , Luz , Campos Magnéticos , Pseudomonas , Procesamiento de Señales Asistido por Computador , Radiación Terahertz
12.
ACS Nano ; 14(8): 10045-10053, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32686930

RESUMEN

The emerging two-dimensional ferromagnetic materials present atomic layer thickness and a perfect interface feature, which have become an attractive research direction in the field of spintronics for low power and deep nanoscale integration. However, it has been proven to be extremely challenging to achieve a room-temperature ferromagnetic candidate with well controlled dimensionality, large-scale production, and convenient heterogeneous integration. Here, we report the growth of wafer-scale two-dimensional Fe3GeTe2 integrated with a topological insulator of Bi2Te3 by molecular beam epitaxy, which shows a Curie temperature (Tc) up to 400 K with perpendicular magnetic anisotropy. Dimensionality-dependent magnetic and magnetotransport measurements find that Tc increases with decreasing Fe3GeTe2 thickness in the heterostructures, indicating an interfacial engineering effect from Bi2Te3. The theoretical calculation further proves that the interfacial exchange coupling could significantly enhance the intralayer spin interaction in Fe3GeTe2, hence giving rise to a higher Tc. Our results provide great potential for the implementation of high-performance spintronic devices based on two-dimensional ferromagnetic materials.

13.
Nano Lett ; 19(2): 692-698, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30685979

RESUMEN

Nonlinear unidirectional spin Hall magnetoresistance (USMR) has been reported in heavy metal/ferromagnet bilayers, which could be employed as an effective method in detecting the magnetization orientation in spintronic devices with two-terminal geometry. Recently, another unidirectional magnetoresistance (UMR) was reported in magnetic topological insulator (TI)-based heterostructures at cryogenic temperature, whose amplitude is orders of magnitude larger than the USMR measured in heavy metal-based magnetic heterostructures at room temperature. Here, we report the UMR effect in the modulation-doped magnetic TI structures. This UMR arises due to the interplay between the magnetic dopant's magnetization and the current-induced surface spin polarization, when they are parallel or antiparallel to each other in the TI material. By varying the dopant's position in the structure, we reveal that the UMR is mainly originating from the interaction between the magnetization and the surface spin-polarized carriers (not bulk carriers). Furthermore, from the magnetic field-, the angular rotation-, and the temperature-dependence, we highlight the correlation between the UMR effect and the magnetism in the structures. The large UMR versus current ratio in TI-based magnetic bilayers promises the easy readout in TI-based spintronic devices with two-terminal geometry.

14.
Science ; 357(6348): 294-299, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28729508

RESUMEN

Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing.

15.
Nanoscale ; 9(9): 3086-3094, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28195299

RESUMEN

The realization and application of spintronic devices would be dramatically advanced if room-temperature ferromagnetism could be integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Herein, we report the observation of such a system - an Si/MnGe superlattice with quantum dots well aligned in the vertical direction successfully grown by molecular beam epitaxy. Such a unique system could take full advantage of the type-II energy band structure of the Si/Ge heterostructure, which could trap the holes inside MnGe QDs, significantly enhancing the hole-mediated ferromagnetism. Magnetic measurements indeed found that the superlattice structure exhibited a Curie temperature of above 400 K. Furthermore, zero-field cooling and field cooling curves could confirm the absence of ferromagnetic compounds, such as Ge8Mn11 (Tc ∼ 270 K) and Ge3Mn5 (Tc ∼ 296 K) in our system. Magnetotransport measurement revealed a clear magnetoresistance transition from negative to positive and a pronounced anomalous Hall effect. Such a unique Si/MnGe superlattice sets a new stage for strengthening ferromagnetism due to the enhanced hole-mediation by quantum confinement, which can be exploited for realizing the room-temperature Ge-based spin field-effect transistors in the future.

16.
Nat Mater ; 16(1): 94-100, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798622

RESUMEN

Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures exhibiting Néel order in an antiferromagnetic CrSb and ferromagnetic order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of magnetic topological insulators. Proximity effects are shown to induce an interfacial spin texture modulation and establish an effective long-range exchange coupling mediated by antiferromagnetism, which significantly enhances the magnetic ordering temperature in the superlattice. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.

17.
Nat Commun ; 7: 12866, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762320

RESUMEN

Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1-x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.

18.
Nanotechnology ; 27(36): 365701, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479155

RESUMEN

Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 µm and [Formula: see text] at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

19.
Nat Nanotechnol ; 11(4): 352-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26727198

RESUMEN

Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

20.
Nat Commun ; 6: 8474, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26442609

RESUMEN

After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr(0.12)Bi(0.26)Sb(0.62))2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA