Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930356

RESUMEN

As the reliability and lifespan requirements of modern equipment continues to escalate, the problems with very high cycle fatigue (VHCF) has obtained increasingly widespread attention, becoming a hot topic in fatigue research. Titanium alloys, which are the most extensively used metal materials in the modern aerospace industry, are particularly prone to VHCF issues. The present study systematically reviewed and summarized the latest (since 2010) developments in VHCF research on titanium alloy, with special focus on the (i) experimental methods, (ii) macroscopic and microscopic characteristics of the fatigue fractures, and (iii) construction of fatigue fracture models. More specifically, the review addresses the technological approaches that were used, mechanisms of fatigue crack initiation, features of the S-N curves and Goodman diagrams, and impact of various factors (such as processing, temperature, and corrosion). In addition, it elucidates the damage mechanisms, evolution, and modeling of VHCF in titanium alloys, thereby improving the understanding of VHCF patterns in titanium alloys and highlighting the current challenges in VHCF research.

2.
Materials (Basel) ; 15(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36143811

RESUMEN

Laser shock peening (LSP) has been employed to improve the mechanical properties of repaired aerospace engine components via laser metal deposition (LMD). This study looked at cross-sectional residual stress, microstructure and high cyclic fatigue performance. The outcomes demonstrated that a compressive residual stress layer with a value of 240 MPa was formed at a depth of 200 µm in the laser melting deposited zone and the microhardness was improved by 13.1%. The findings of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis revealed that misorientation increased and dislocation features were observed after LSP which is beneficial to the enhancement of fatigue performance. The high cycle fatigue data illustrated that the LMD+LSPned samples exhibited 61% improvement in comparison to the as-LMD samples. In the aerospace sector, LSP and LMD are therefore very effective and promising techniques for restoring high-value components.

3.
Appl Opt ; 60(28): 8624-8633, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613087

RESUMEN

With the large-scale application of composite materials in military aircraft, various composite material detection technologies with infrared nondestructive and ultrasonic nondestructive testing as the core have played an important role in detecting composite material component damage in military aircraft. At present, the damage of composite materials is mostly recognized manually, which is time-consuming, laborious, and inefficient. It can effectively improve detection efficiency and accuracy by using intelligent detection methods to detect and recognize damage. Moreover, the effect of infrared detection is significantly reduced with increasing detection depth, while ultrasonic detection has shallow-blind areas. A cascade fusion R-CNN network is proposed in order to comprehensively identify composite material damage. This network realizes the intelligent fusion recognition of infrared and ultrasonic damage images of composite materials. The network is based on a cascade R-CNN network, using fusion modules and BiFPN for improvement. For the infrared image and ultrasonic C-scan image data set established in this paper, the algorithm can identify the type and location of damage detected by infrared and ultrasonic testing. Its recognition accuracy is 99.3% and mean average precision (mAP) is 90.4%. In the detection process, the characteristics of infrared and ultrasonic images are used to realize the recognition of damage depth. Compared to SSD, YOLOv4, faster R-CNN and cascade R-CNN, the network proposed in this paper is better and more effective.

4.
Appl Opt ; 60(17): 5124-5133, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34143079

RESUMEN

Aero-engine blades are an integral part of the aero-engine, and the integrity of these blades affects the flight performance and safety performance of an aircraft. The traditional manual detection method is time-consuming, labor-intensive, and inefficient. Hence, it is particularly important to use intelligent detection methods to detect and identify damage. In order to quickly and accurately identify the damage of the aero-engine blades, the present study proposes a network based on the Improved Cascade Mask R-CNN network-to establish the damage related to the aero-engine blades and detection models. The model can identify the damage type and locate and segment the area of damage. Furthermore, the accuracy rate can reach up to 98.81%, the Bbox-mAP is 78.7%, and the Segm-mAP is 77.4%. In comparing the Improved Cascade Mask R-CNN network with the YOLOv4, Cascade R-CNN, Res2Net, and Cascade Mask R-CNN networks, the results revealed that the network used in the present is excellent and effective.

5.
Materials (Basel) ; 14(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918881

RESUMEN

In the laser shock peening process of titanium alloy thin blades, a shock wave will be repeatedly reflected and coupled in the blades, resulting in the failure of the formation of a gradient residual compressive stress layer, which is the key to improve fatigue performance and resist foreign object impact. This paper takes TC17 titanium alloy sheet as the research object to reveal the influence mechanism on residual stress-strain profile of shock wave reflection-coupling by shock wave propagation and key position dynamic response. Based on the result of influence mechanism, two wave transmission methods are proposed to regulate shock wave in order to reduce the intensity of shock wave reflection. The analysis shows that the high strength stress be formed when the shock wave is reflected and coupled in the sheet, which causes the re-plastic deformation and the decrease of transverse plastic strain. This eventually leads to residual tensile stress up to 410 MPa being formed within a 0.5 mm radial direction and 0.3 mm deep of the spot range. The use of "soft" and "hard" wave-transmitting layers greatly reduces the shock wave reflection intensity, and under the condition of the "hard" wave-transmitting layer, a better impedance matching is achieved, resulting in a residual compressive stress of about 400 MPa.

6.
Materials (Basel) ; 12(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022993

RESUMEN

The residual stress introduced by laser shock peening (LSP) is one of the most important factors in improving metallic fatigue life. The shock wave pressure has considerable influence on residual stress distribution, which is affected by the distribution of laser energy. In this work, a titanium alloy is treated by LSP with flat-top and Gaussian laser beams, and the effects of spatial energy distribution on residual stress are investigated. Firstly, a 3D finite element model (FEM) is developed to predict residual stress with different spatial energy distribution, and the predicted residual stress is validated by experimental data. Secondly, three kinds of pulse energies, 3 J, 4 J and 5 J, are chosen to study the difference of residual stress introduced by flat-top and Gaussian laser beams. Lastly, the effect mechanism of spatial energy distribution on residual stress is revealed.

7.
Materials (Basel) ; 11(4)2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29642379

RESUMEN

As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

8.
Sci Technol Adv Mater ; 14(5): 055010, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877617

RESUMEN

We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 µm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA