Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Cell Dev Biol ; 12: 1279723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086660

RESUMEN

Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38858071

RESUMEN

How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.

3.
Nat Protoc ; 19(3): 928-959, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238582

RESUMEN

Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.


Asunto(s)
Diagnóstico por Imagen , Poliestirenos , Animales , Programas Informáticos , Rayos Láser
4.
Adv Sci (Weinh) ; 11(10): e2303816, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38145336

RESUMEN

The hierarchical design of the toe pad surface in geckos and its reversible adhesiveness have inspired material scientists for many years. Micro- and nano-patterned surfaces with impressive adhesive performance have been developed to mimic gecko's properties. While the adhesive performance achieved in some examples has surpassed living counterparts, the durability of the fabricated surfaces is limited and the capability to self-renew and restore function-inherent to biological systems-is unimaginable. Here the morphogenesis of gecko setae using skin samples from the Bibron´s gecko (Chondrodactylus bibronii) is studied. Gecko setae develop as specialized apical differentiation structures at a distinct cell-cell layer interface within the skin epidermis. A primary role for F-actin and microtubules as templating structural elements is necessary for the development of setae's hierarchical morphology, and a stabilization role of keratins and corneus beta proteins is identified. Setae grow from single cells in a bottom layer protruding into four neighboring cells in the upper layer. The resulting multicellular junction can play a role during shedding by facilitating fracture of the cell-cell interface and release of the high aspect ratio setae. The results contribute to the understanding of setae regeneration and may inspire future concepts to bioengineer self-renewable patterned adhesive surfaces.


Asunto(s)
Actinas , Lagartos , Animales , Sensilos , Adhesividad , Lagartos/anatomía & histología , Adhesivos
5.
J Cell Biol ; 222(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37314732

RESUMEN

How adult stem cells signal in vivo over time to coordinate their fate and behavior across self-renewing tissues remains a challenging question. In this issue, Moore et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202302095) combine high-resolution live imaging in mice with machine learning tools to reveal temporally regulated tissue-scale patterns of Ca2+ signaling orchestrated by cycling basal stem cells of the skin epidermis.


Asunto(s)
Calcio , Ciclo Celular , Piel , Células Madre , Animales , Ratones , Calcio/metabolismo , División Celular , Piel/citología , Células Madre/metabolismo , Aprendizaje Automático , Epidermis
6.
Sci Rep ; 13(1): 7743, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173371

RESUMEN

Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.


Asunto(s)
Actomiosina , Transducción de Señal , Actomiosina/metabolismo , Epitelio/metabolismo , Citoesqueleto/metabolismo , Queratinas/metabolismo , Células Epiteliales/metabolismo
7.
J Invest Dermatol ; 142(12): 3282-3293, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35691363

RESUMEN

Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.


Asunto(s)
Epidermólisis Ampollosa Simple , Humanos , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/metabolismo , Queratinas/metabolismo , Estaurosporina/metabolismo , Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Mutación
8.
Front Cell Dev Biol ; 10: 903696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686051

RESUMEN

While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.

9.
J Invest Dermatol ; 142(4): 1020-1025, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35051379

RESUMEN

In this perspective, we focus on the skin epidermis and take you on a journey that highlights the adhesive- and cell shape‒changing adventures of a keratinocyte while it travels through the different layers of the epidermis, which is essential to make, maintain, and repair this barrier.


Asunto(s)
Adhesivos , Queratinocitos , Forma de la Célula , Células Epidérmicas , Epidermis
10.
Nat Cell Biol ; 23(7): 771-781, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34239060

RESUMEN

Tissue turnover requires activation and lineage commitment of tissue-resident stem cells (SCs). These processes are impacted by ageing, but the mechanisms remain unclear. Here, we addressed the mechanisms of ageing in murine hair follicle SCs (HFSCs) and observed a widespread reduction in chromatin accessibility in aged HFSCs, particularly at key self-renewal and differentiation genes, characterized by bivalent promoters occupied by active and repressive chromatin marks. Consistent with this, aged HFSCs showed reduced ability to activate bivalent genes for efficient self-renewal and differentiation. These defects were niche dependent as the transplantation of aged HFSCs into young recipients or synthetic niches restored SC functions. Mechanistically, the aged HFSC niche displayed widespread alterations in extracellular matrix composition and mechanics, resulting in mechanical stress and concomitant transcriptional repression to silence promoters. As a consequence, increasing basement membrane stiffness recapitulated age-related SC changes. These data identify niche mechanics as a central regulator of chromatin state, which, when altered, leads to age-dependent SC exhaustion.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Senescencia Celular , Ensamble y Desensamble de Cromatina , Folículo Piloso/fisiología , Regiones Promotoras Genéticas , Nicho de Células Madre , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula , Autorrenovación de las Células/genética , Células Cultivadas , Senescencia Celular/genética , Matriz Extracelular/fisiología , Silenciador del Gen , Folículo Piloso/citología , Folículo Piloso/metabolismo , Masculino , Mecanotransducción Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Envejecimiento de la Piel , Células Madre/metabolismo , Estrés Mecánico , Transcripción Genética
11.
EMBO Rep ; 22(8): e52507, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309183

RESUMEN

Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.


Asunto(s)
Pliegue de Proteína , Proteostasis , Supervivencia Celular , Proteoma/metabolismo , Estrés Mecánico
12.
J Invest Dermatol ; 141(11): 2602-2610.e3, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33965403

RESUMEN

The skin epidermis is attached to the underlying dermis by a laminin 332 (Lm332)-rich basement membrane. Consequently, loss of Lm332 leads to the severe blistering disorder epidermolysis bullosa junctionalis in humans and animals. Owing to the indispensable role of Lm332 in keratinocyte adhesion in vivo, the severity of the disease has limited research into other functions of the protein. We have conditionally disrupted Lm332 expression in basal keratinocytes of adult mice. Although blisters develop along the interfollicular epidermis, hair follicle basal cells provide sufficient anchorage of the epidermis to the dermis, making inducible deletion of the Lama3 gene compatible with life. Loss of Lm332 promoted the thickening of the epidermis and exaggerated desquamation. Global RNA expression analysis revealed major changes in the expression of keratins, cornified envelope proteins, and cellular stress markers. These modifications of the keratinocyte genetic program are accompanied by changes in cell shape and disorganization of the actin cytoskeleton. These data indicate that loss of Lm332-mediated progenitor cell adhesion alters cell fate and disturbs epidermal homeostasis.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Homeostasis/fisiología , Queratinocitos/citología , Citoesqueleto de Actina/fisiología , Alarminas/fisiología , Animales , Vesícula/etiología , Diferenciación Celular , Epidermis/patología , Queratinas/análisis , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/análisis , Kalinina
13.
J Invest Dermatol ; 141(4S): 1017-1023, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33531135

RESUMEN

The mammalian skin is essential to protect the organism from external damage while at the same time enabling communication with the environment. Aging compromises skin function and regeneration, which is further exacerbated by external influences, such as UVR from the sun. Aging and UVR are also major risk factors contributing to the development of skin cancer. Whereas aging research traditionally has focused on the role of DNA damage and metabolic and stress pathways, less is known about how aging affects tissue architecture and cell dynamics in skin homeostasis and regeneration and whether changes in these processes promote skin cancer. This review highlights how key regulators of cell polarity and adhesion affect epidermal mechanics, tissue architecture, and stem cell dynamics in skin aging and cancer.


Asunto(s)
Polaridad Celular/genética , Epidermis/patología , Envejecimiento de la Piel/genética , Neoplasias Cutáneas/patología , Animales , Adhesión Celular/genética , Adhesión Celular/efectos de la radiación , Polaridad Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Modelos Animales de Enfermedad , Epidermis/efectos de la radiación , Humanos , Ratones , Regeneración/genética , Regeneración/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Células Madre , Rayos Ultravioleta/efectos adversos
14.
Nat Commun ; 12(1): 1308, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637728

RESUMEN

The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , División Celular/fisiología , Células Epidérmicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Células Madre/metabolismo , Animales , Carcinoma Basocelular/patología , Proteínas Portadoras/metabolismo , Adhesión Celular , Proliferación Celular , Desarrollo Embrionario/fisiología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Femenino , Uniones Intercelulares , Queratinocitos , Ratones , Mitosis , Morfogénesis , Organogénesis
15.
16.
Nature ; 584(7820): 196-198, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32728152

Asunto(s)
Piel , Células Madre
17.
Curr Biol ; 30(10): R535-R543, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32428495

RESUMEN

Cadherin-based cell-cell junctions help metazoans form polarized sheets of cells, which are necessary for the development of organs and the compartmentalization of functions. The components of the protein complexes that generate cadherin-based junctions have ancient origins, with conserved elements shared between animals as diverse as sponges and vertebrates. In invertebrates, the formation and function of epithelial sheets depends on classical cadherin-containing adherens junctions, which link actin to the plasma membrane through α-, ß- and p120 catenins. Vertebrates also have a new type of cadherin-based intercellular junction called the desmosome, which allowed for the creation of more complex and effective tissue barriers against environmental stress. While desmosomes have a molecular blueprint that is similar to that of adherens junctions, desmosomal cadherins - called desmogleins and desmocollins - link intermediate filaments (IFs) rather than actin to the plasma membrane through protein complexes comprising relatives of ß-catenin (plakoglobin) and p120 catenin (plakophilins). In turn, desmosomal catenins interact with members of the IF-binding plakin family to create the desmosome-IF linking complex. In this Minireview, we discuss when and how desmosomal components evolved, and how their ability to anchor the highly elastic and tough IF cytoskeleton endowed vertebrates with robust tissues capable of not only resisting but also properly responding to environmental stress.


Asunto(s)
Evolución Biológica , Desmosomas/genética , Proteínas de la Membrana/metabolismo , Animales , Regulación de la Expresión Génica , Proteínas de la Membrana/genética
18.
Cell ; 181(4): 800-817.e22, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32302590

RESUMEN

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.


Asunto(s)
Núcleo Celular/fisiología , Heterocromatina/fisiología , Mecanotransducción Celular/fisiología , Animales , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/fisiología , Heterocromatina/metabolismo , Humanos , Masculino , Mecanorreceptores/fisiología , Células Madre Mesenquimatosas , Ratones , Estrés Mecánico
19.
Soft Matter ; 16(13): 3325-3337, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196025

RESUMEN

Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.


Asunto(s)
Cadherinas/genética , Adhesión Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Cadherinas/química , Forma de la Célula/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Humanos , Propiedades de Superficie
20.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075937

RESUMEN

Dendritic cells (DCs) are one of the earliest targets of HIV-1 infection acting as a "Trojan horse," concealing the virus from the innate immune system and delivering it to T cells via virological synapses (VS). To explicate how the virus is trafficked through the cell to the VS and evades degradation, a high-throughput small interfering RNA screen targeting membrane trafficking proteins was performed in monocyte-derived DCs. We identified several proteins including BIN-1 and RAB7L1 that share common roles in transport from endosomal compartments. Depletion of target proteins resulted in an accumulation of virus in intracellular compartments and significantly reduced viral trans-infection via the VS. By targeting endocytic trafficking and retromer recycling to the plasma membrane, we were able to reduce the virus's ability to accumulate at budding microdomains and the VS. Thus, we identify key genes involved in a pathway within DCs that is exploited by HIV-1 to traffic to the VS.IMPORTANCE The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo.


Asunto(s)
Células Dendríticas/inmunología , Infecciones por VIH/genética , VIH-1/inmunología , Sinapsis Inmunológicas/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/virología , Infecciones por VIH/virología , VIH-1/patogenicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Monocitos/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Transporte de Proteínas/genética , Proteínas Supresoras de Tumor/metabolismo , Virión/metabolismo , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA