Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(2): e0177723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289106

RESUMEN

Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.


Asunto(s)
Coronavirus , Rubéola (Sarampión Alemán) , Humanos , Virus de la Rubéola/genética , Virus de la Rubéola/metabolismo , Ribosa , Poli(ADP-Ribosa) Polimerasas/genética , Poli Adenosina Difosfato Ribosa , Coronavirus/metabolismo , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo
2.
Elife ; 122023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37042660

RESUMEN

Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.


Asunto(s)
Fenómenos Biológicos , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácidos Teicoicos/metabolismo , Señales (Psicología) , Lipopolisacáridos/metabolismo
3.
Sci Rep ; 12(1): 13133, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907949

RESUMEN

Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by D-alanine, a process known as D-alanylation. TA D-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after D-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA D-alanylation pathway.


Asunto(s)
Proteínas Bacterianas , Ácidos Teicoicos , Alanina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Ácidos Teicoicos/metabolismo
4.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 12): 877-884, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27917835

RESUMEN

Viral proteases are proteolytic enzymes that orchestrate the assembly of viral components during the viral life cycle and proliferation. Here, the expression, purification, crystallization and preliminary X-ray diffraction analysis are presented of protease 3C, the main protease of an emerging enterovirus, coxsackievirus B3, that is responsible for many cases of viral myocarditis. Polycrystalline protein precipitates suitable for X-ray powder diffraction (XRPD) measurements were produced in the presence of 22-28%(w/v) PEG 4000, 0.1 M Tris-HCl, 0.2 M MgCl2 in a pH range from 7.0 to 8.5. A polymorph of monoclinic symmetry (space group C2, unit-cell parameters a = 77.9, b = 65.7, c = 40.6 Å, ß = 115.9°) was identified via XRPD. These results are the first step towards the complete structural determination of the molecule via XRPD and a parallel demonstration of the accuracy of the method.


Asunto(s)
Cisteína Endopeptidasas/química , Enterovirus Humano B/química , Proteínas Virales/química , Proteasas Virales 3C , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA