Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochimie ; 219: 1-11, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37562705

RESUMEN

Potato virus Y (PVY) is one of the most dangerous agricultural pathogens that causes substantial harm to vegetative propagated crops, such as potatoes (Solanum tuberosum L.). A necessary condition for PVY infection is an interaction between the plant cap-binding translation initiation factors eIF4E and a viral protein VPg, which mimics the cap-structure. In this study, we identified the point mutations in potato eIF4E1 and eIF4E2 that disrupt VPg binding while preserving the functional activity. For the structural interpretation of the obtained results, molecular models of all the studied forms of eIF4E1 and eIF4E2 were constructed and analyzed via molecular dynamics. The results of molecular dynamics simulations corresponds to the biochemical results and suggests that the ß1ß2 loop plays a key role in the stabilization of both eIF4E-cap and eIF4E-VPg complexes.


Asunto(s)
Potyvirus , Solanum tuberosum , Solanum , Solanum/metabolismo , Solanum tuberosum/genética , Potyvirus/genética , Potyvirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Enfermedades de las Plantas/genética
2.
Biochemistry (Mosc) ; 88(2): 221-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37072332

RESUMEN

Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) functions as a heterotrimeric complex. It consists of three subunits (α, ß, γ). α- and ß-subunits are bound to γ-subunit by hydrogen bonds and van der Waals interactions, but do not contact each other. Although main functions of the factor are performed by the γ-subunit, reliable formation of αγ and ßγ complexes is necessary for its proper functioning. In this work, we introduced mutations in the recognition part of the ßγ interface and showed that hydrophobic effect plays a crucial role in the recognition of subunits both in eukaryotes and archaea. Shape and properties of the groove on the surface of γ-subunit facilitates transition of the disordered recognition part of the ß-subunit into an α-helix containing approximately the same number of residues in archaea and eukaryotes. In addition, based on the newly obtained data, it was concluded that in archaea and eukaryotes, transition of the γ-subunit to the active state leads to additional contact between the region of switch 1 and C-terminal part of the ß-subunit, which stabilizes helical conformation of the switch.


Asunto(s)
Eucariontes , Factor 2 Procariótico de Iniciación , Sitios de Unión , Factor 2 Procariótico de Iniciación/química , Eucariontes/genética , Eucariontes/metabolismo , Archaea/genética , Archaea/metabolismo , Guanosina Trifosfato
3.
Biochemistry (Mosc) ; 86(9): 1128-1138, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565316

RESUMEN

Potato virus Y (PVY) is one of the most common and harmful plant viruses. Translation of viral RNA starts with the interaction between the plant cap-binding translation initiation factors eIF4E and viral genome-linked protein (VPg) covalently attached to the viral RNA. Disruption of this interaction is one of the natural mechanisms of plant resistance to PVY. The multigene eIF4E family in the potato (Solanum tuberosum L.) genome contains genes for the translation initiation factors eIF4E1, eIF4E2, and eIF(iso)4E. However, which of these factors can be recruited by the PVY, as well as the mechanism of this interaction, remain obscure. Here, we showed that the most common VPg variant from the PVY strain NTN interacts with eIF4E1 and eIF4E2, but not with eIF(iso)4E. Based on the VPg, eIF4E1, and eIF4E2 models and data on the natural polymorphism of VPg amino acid sequence, we suggested that the key role in the recognition of potato cap-binding factors belongs to the R104 residue of VPg. To verify this hypothesis, we created VPg mutants with substitutions at position 104 and examined their ability to interact with potato eIF4E factors. The obtained data were used to build the theoretical model of the VPg-eIF4E2 complex that differs significantly from the earlier models of VPg complexes with eIF4E proteins, but is in a good agreement with the current biochemical data.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , Factor 4E Eucariótico de Iniciación/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Solanum tuberosum/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética
4.
Biochemistry (Mosc) ; 86(4): 397-408, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33941062

RESUMEN

Ribosomal protein L1 is a conserved two-domain protein that is involved in formation of the L1 stalk of the large ribosomal subunit. When there are no free binding sites available on the ribosomal 23S RNA, the protein binds to the specific site on the mRNA of its own operon (L11 operon in bacteria and L1 operon in archaea) preventing translation. Here we show that the regulatory properties of the r-protein L1 and its domain I are conserved in the thermophilic bacteria Thermus and Thermotoga and in the halophilic archaeon Haloarcula marismortui. At the same time the revealed features of the operon regulation in thermophilic bacteria suggest presence of two regulatory regions.


Asunto(s)
Haloarcula marismortui/genética , Operón/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Ribosómicas/genética , Thermotoga maritima/genética , Thermus thermophilus/genética , Regulación de la Expresión Génica Arqueal , Regulación Bacteriana de la Expresión Génica , Haloarcula marismortui/metabolismo , Calor , Thermotoga maritima/metabolismo , Thermus thermophilus/metabolismo
5.
Biochemistry (Mosc) ; 86(Suppl 1): S12-S23, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33827397

RESUMEN

Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot-Marie-Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.


Asunto(s)
Glicina-ARNt Ligasa/genética , Mutación , Enfermedades del Sistema Nervioso/enzimología , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Femenino , Humanos , Masculino , Atrofia Muscular Espinal/enzimología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/enzimología , Neuronas/fisiología
6.
Protein J ; 36(3): 157-165, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28317076

RESUMEN

A correlation between the ligand-protein affinity and the identification of the ligand in the experimental electron density maps obtained by X-ray crystallography has been tested for a number of RNA-binding proteins. Bacterial translation regulators ProQ, TRAP, Rop, and Hfq together with their archaeal homologues SmAP have been used. The equilibrium dissociation constants for the N-methyl-anthraniloyl-labelled adenosine and guanosine monophosphates titrated by the proteins have been determined by the fluorescent anisotropy measurements. The estimated stability of the nucleotide-protein complexes has been matched with a presence of the nucleotides in the structures of the proposed nucleotide-protein complexes. It has been shown that the ribonucleotides can be definitely identified in the experimental electron density maps at equilibrium dissociation constant <10 µM. At KD of 20-40 µM, long incubation of the protein crystals in the nucleotide solution is required to obtain the structures of the complexes. The complexes with KD value higher than 50 µM are not stable enough to survive in crystallization conditions.


Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Modelos Químicos , Modelos Moleculares , Nucleótidos/química , Proteínas Ribosómicas/química , Cristalografía por Rayos X , Probabilidad
7.
J Biomol Struct Dyn ; 35(8): 1615-1628, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27187760

RESUMEN

The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly. In this work, the RNA-binding ability of an archaeal Hfq-like protein from Methanococcus jannaschii has been studied by X-ray crystallography, anisotropy fluorescence and surface plasmon resonance. It has been found that MjaHfq preserves the proximal RNA-binding site that usually recognizes uridine-rich sequences. Distal adenine-binding and lateral RNA-binding sites show considerable structural changes as compared to bacterial Hfq. MjaHfq did not bind mononucleotides at these sites and would not recognize single-stranded RNA as its bacterial homologues. Nevertheless, MjaHfq possesses affinity to poly(A) RNA that seems to bind at the unstructured positive-charged N-terminal tail of the protein.


Asunto(s)
Proteínas Arqueales/química , Proteína de Factor 1 del Huésped/química , Methanocaldococcus/química , ARN de Archaea/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Cinética , Methanocaldococcus/metabolismo , Modelos Moleculares , Poli A/química , Poli A/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 376-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664749

RESUMEN

Ribosomal protein L1, as part of the L1 stalk of the 50S ribosomal subunit, is implicated in directing tRNA movement through the ribosome during translocation. High-resolution crystal structures of four mutants (T217V, T217A, M218L and G219V) of the ribosomal protein L1 from Thermus thermophilus (TthL1) in complex with a specific 80 nt fragment of 23S rRNA and the structures of two of these mutants (T217V and G219V) in the RNA-unbound form are reported in this work. All mutations are located in the highly conserved triad Thr-Met-Gly, which is responsible for about 17% of all protein-RNA hydrogen bonds and 50% of solvent-inaccessible intermolecular hydrogen bonds. In the mutated proteins without bound RNA the RNA-binding regions show substantial conformational changes. On the other hand, in the complexes with RNA the structures of the RNA-binding surfaces in all studied mutants are very similar to the structure of the wild-type protein in complex with RNA. This shows that formation of the RNA complexes restores the distorted surfaces of the mutant proteins to a conformation characteristic of the wild-type protein complex. Domain I of the mutated TthL1 and helix 77 of 23S rRNA form a rigid body identical to that found in the complex of wild-type TthL1 with RNA, suggesting that the observed relative orientation is conserved and is probably important for ribosome function. Analysis of the complex structures and the kinetic data show that the number of intermolecular contacts and hydrogen bonds in the RNA-protein contact area does not correlate with the affinity of the protein for RNA and cannot be used as a measure of affinity.


Asunto(s)
ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Mutación Puntual , Conformación Proteica , ARN Ribosómico 23S/química , Proteínas Ribosómicas/química , Thermus thermophilus/química
9.
J Mol Recognit ; 24(4): 524-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20740692

RESUMEN

The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein-RNA affinity. The threonine residue in the universally conserved triad Thr-Met-Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1-23S rRNA complexes are less stable compared to the wild type complexes.


Asunto(s)
ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Sitios de Unión/fisiología , Cinética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , ARN Ribosómico 23S/genética , Proteínas Ribosómicas/genética , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie/métodos , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
10.
Nucleic Acids Res ; 35(21): 7389-95, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17962298

RESUMEN

Ribosomal protein L1 has a dual function as a ribosomal protein binding 23S rRNA and as a translational repressor binding its mRNA. L1 is a two-domain protein with N- and C-termini located in domain I. Earlier it was shown that L1 interacts with the same targets on both rRNA and mRNA mainly through domain I. We have suggested that domain I is necessary and sufficient for specific RNA-binding by L1. To test this hypothesis, a truncation mutant of L1 from Thermus thermophilus, representing domain I, was constructed by deletion of the central part of the L1 sequence, which corresponds to domain II. It was shown that the isolated domain I forms stable complexes with specific fragments of both rRNA and mRNA. The crystal structure of the isolated domain I was determined and compared with the structure of this domain within the intact protein L1. This comparison revealed a close similarity of both structures. Our results confirm our suggestion that in protein L1 its domain I alone is sufficient for specific RNA binding, whereas domain II stabilizes the L1-rRNA complex.


Asunto(s)
Proteínas Bacterianas/química , ARN Mensajero/metabolismo , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Ribosómicas/metabolismo , Thermus thermophilus
11.
Nucleic Acids Res ; 35(11): 3752-63, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17517772

RESUMEN

RNA chaperone activity is defined as the ability of proteins to either prevent RNA from misfolding or to open up misfolded RNA conformations. One-third of all large ribosomal subunit proteins from E. coli display this activity, with L1 exhibiting one of the highest activities. Here, we demonstrate via the use of in vitro trans- and cis-splicing assays that the RNA chaperone activity of L1 is conserved in all three domains of life. However, thermophilic archaeal L1 proteins do not display RNA chaperone activity under the experimental conditions tested here. Furthermore, L1 does not exhibit RNA chaperone activity when in complexes with its cognate rRNA or mRNA substrates. The evolutionary conservation of the RNA chaperone activity among L1 proteins suggests a functional requirement during ribosome assembly, at least in bacteria, mesophilic archaea and eukarya. Surprisingly, rather than facilitating catalysis, the thermophilic archaeal L1 protein from Methanococcus jannaschii (MjaL1) completely inhibits splicing of the group I thymidylate synthase intron from phage T4. Mutational analysis of MjaL1 excludes the possibility that the inhibitory effect is due to stronger RNA binding. To our knowledge, MjaL1 is the first example of a protein that inhibits group I intron splicing.


Asunto(s)
Evolución Molecular , Chaperonas Moleculares/metabolismo , Empalme del ARN , Proteínas Ribosómicas/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Sitios de Unión , Análisis Mutacional de ADN , Proteínas de Escherichia coli/metabolismo , Methanococcus/genética , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética
12.
J Mol Biol ; 355(4): 747-59, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16330048

RESUMEN

The RNA-binding ability of ribosomal protein L1 is of profound interest, since L1 has a dual function as a ribosomal structural protein that binds rRNA and as a translational repressor that binds its own mRNA. Here, we report the crystal structure at 2.6 A resolution of ribosomal protein L1 from the bacterium Thermus thermophilus in complex with a 38 nt fragment of L1 mRNA from Methanoccocus vannielii. The conformation of RNA-bound T.thermophilus L1 differs dramatically from that of the isolated protein. Analysis of four copies of the L1-mRNA complex in the crystal has shown that domain II of the protein does not contribute to mRNA-specific binding. A detailed comparison of the protein-RNA interactions in the L1-mRNA and L1-rRNA complexes identified amino acid residues of L1 crucial for recognition of its specific targets on the both RNAs. Incorporation of the structure of bacterial L1 into a model of the Escherichia coli ribosome revealed two additional contact regions for L1 on the 23S rRNA that were not identified in previous ribosome models.


Asunto(s)
ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Thermus thermophilus , Secuencia de Aminoácidos , Enlace de Hidrógeno , Cinética , Methanococcus/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Alineación de Secuencia , Resonancia por Plasmón de Superficie
13.
Nucleic Acids Res ; 33(2): 478-85, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15659579

RESUMEN

The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA-protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA-protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.


Asunto(s)
ARN Mensajero/química , ARN Ribosómico 23S/química , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Sitios de Unión , Homeostasis , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico 23S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA