Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Elife ; 122023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085667

RESUMEN

Free fatty acid receptor 2 (FFAR2) is activated by short-chain fatty acids and expressed widely, including in white adipocytes and various immune and enteroendocrine cells. Using both wild-type human FFAR2 and a designer receptor exclusively activated by designer drug (DREADD) variant we explored the activation and phosphorylation profile of the receptor, both in heterologous cell lines and in tissues from transgenic knock-in mouse lines expressing either human FFAR2 or the FFAR2-DREADD. FFAR2 phospho-site-specific antisera targeting either pSer296/pSer297 or pThr306/pThr310 provided sensitive biomarkers of both constitutive and agonist-mediated phosphorylation as well as an effective means to visualise agonist-activated receptors in situ. In white adipose tissue, phosphorylation of residues Ser296/Ser297 was enhanced upon agonist activation whilst Thr306/Thr310 did not become phosphorylated. By contrast, in immune cells from Peyer's patches Thr306/Thr310 become phosphorylated in a strictly agonist-dependent fashion whilst in enteroendocrine cells of the colon both Ser296/Ser297 and Thr306/Thr310 were poorly phosphorylated. The concept of phosphorylation bar-coding has centred to date on the potential for different agonists to promote distinct receptor phosphorylation patterns. Here, we demonstrate that this occurs for the same agonist-receptor pairing in different patho-physiologically relevant target tissues. This may underpin why a single G protein-coupled receptor can generate different functional outcomes in a tissue-specific manner.


Asunto(s)
Ácidos Grasos no Esterificados , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Línea Celular , Ácidos Grasos Volátiles/metabolismo , Ratones Transgénicos , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo
2.
Hypertension ; 80(8): 1683-1696, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37254738

RESUMEN

BACKGROUND: Notch3 (neurogenic locus notch homolog protein 3) is implicated in vascular diseases, including pulmonary hypertension (PH)/pulmonary arterial hypertension. However, molecular mechanisms remain elusive. We hypothesized increased Notch3 activation induces oxidative and endoplasmic reticulum (ER) stress and downstream redox signaling, associated with procontractile pulmonary artery state, pulmonary vascular dysfunction, and PH development. METHODS: Studies were performed in TgNotch3R169C mice (harboring gain-of-function [GOF] Notch3 mutation) exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and in mouse lung. Notch3-regulated genes/proteins, ER stress, ROCK (Rho-associated kinase) expression/activity, Ca2+ transients and generation of reactive oxygen species, and nitric oxide were measured. Pulmonary vascular reactivity was assessed in the presence of fasudil (ROCK inhibitor) and 4-phenylbutyric acid (ER stress inhibitor). RESULTS: Hypoxia induced a more severe PH phenotype in TgNotch3R169C mice versus controls. TgNotch3R169C mice exhibited enhanced Notch3 activation and expression of Notch3 targets Hes Family BHLH Transcription Factor 5 (Hes5), with increased vascular contraction and impaired vasorelaxation that improved with fasudil/4-phenylbutyric acid. Notch3 mutation was associated with increased pulmonary vessel Ca2+ transients, ROCK activation, ER stress, and increased reactive oxygen species generation, with reduced NO generation and blunted sGC (soluble guanylyl cyclase)/cGMP signaling. These effects were ameliorated by N-acetylcysteine. pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension recapitulated Notch3/Hes5 signaling, ER stress and redox changes observed in PH mice. CONCLUSIONS: Notch3 GOF amplifies vascular dysfunction in hypoxic PH. This involves oxidative and ER stress, and ROCK. We highlight a novel role for Notch3/Hes5-redox signaling and important interplay between ER and oxidative stress in PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión , Hipertensión Arterial Pulmonar , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Oxidación-Reducción , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Proteínas Represoras/metabolismo , Humanos
3.
Eur J Pharmacol ; 900: 174066, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33789156

RESUMEN

Methamphetamine (MA) abuse is associated with the development of pulmonary arterial hypertension (PAH) and subsequent right ventricular failure. A recent clinical study demonstrated that female sex is a major risk factor for MA-induced PAH. The mechanisms associated with increased prevalence and severity of MA-induced PAH in females are still unclear. We hypothesized that MA may promote changes in gene expression in the right ventricle contributing to the development and/or worsening of PAH in females. Male and female C57BL/6 mice were treated with either MA or vehicle. Right and left ventricular systolic pressures (RVSP and LVSP, respectively) were assessed and tissue samples were collected for gene expression and histology. LVSP and RVSP were not affected by MA in either males or females. Right ventricular hypertrophy was significantly increased by MA in females but it was not affected by MA in males. In the female mice, MA-induced right ventricular hypertrophy was associated with increased expression of brain natriuretic peptide gene and members of the TGF-ß receptor signaling pathway such as TGF-ß receptor-1, smad3 and smad7. In male mice, there were no changes in right ventricular gene expression. Our results suggest that MA caused right ventricular hypertrophy in female mice, but not in males and that this was associated with an increase in hypertrophic genes. The right ventricular hypertrophy was not dependent on increased RVSP suggesting a direct effect of MA on the right ventricle. If this translates to PAH patients, it might explain the poor outcome observed in MA-associated female PAH patients.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Hipertrofia Ventricular Derecha/genética , Metanfetamina/farmacología , Trastornos Relacionados con Anfetaminas/genética , Animales , Presión Sanguínea/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Hipertensión Arterial Pulmonar/genética , Receptores de Factores de Crecimiento Transformadores beta/efectos de los fármacos , Caracteres Sexuales , Transducción de Señal/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
4.
Mol Ther Nucleic Acids ; 22: 396-405, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33230444

RESUMEN

The 5HT1B receptor (5HT1BR) contributes to the pathogenic effects of serotonin in pulmonary arterial hypertension. Here, we determine the effect of a microRNA96 (miR96) mimic delivered directly to the lungs on development of severe pulmonary hypertension in rats. Female rats were dosed with sugen (30 mg/kg) and subjected to 3 weeks of hypobaric hypoxia. In normoxia, rats were dosed with either a 5HT1BR antagonist SB216641 (7.5 mg/kg/day for 3 weeks), miR96, or scramble sequence (50 µg per rat), delivered by intratracheal (i.t) administration, once a week for 3 weeks. Cardiac hemodynamics were determined, pulmonary vascular remodeling was assessed, and gene expression was assessed by qRT-PCR, and in situ hybridization and protein expression were assessed by western blot and ELISA. miR96 expression was increased in pulmonary arteries and associated with a downregulation of the 5HT1BR protein in the lung. miR96 reduced progression of right ventricular systolic pressure, pulmonary arterial remodeling, right ventricular hypertrophy, and the occurrence of occlusive pulmonary lesions. Importantly, miR96 had no off-target effects and did not affect fibrotic markers of liver and kidney function. In conclusion, direct delivery of miR96 to the lungs was effective, reducing progression of sugen/hypoxia-induced pulmonary hypertension with no measured off-target effects. miR96 may be a novel therapy for pulmonary arterial hypertension, acting through downregulation of 5HT1BR.

5.
Biomedicines ; 8(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086482

RESUMEN

Right ventricular hypertrophy (RVH) and subsequent failure are consequences of pulmonary arterial hypertension (PAH). While females are four times more likely to develop PAH, male patients have poorer survival even with treatment, suggesting a sex-dependent dimorphism in right ventricular (RV) hypertrophy/compensation. This may result from differential gene expression in the RV in male vs. female. To date, the sex dependent effect of pressure overload on RV function and changes in gene expression is still unclear. We hypothesize that pressure overload promotes gene expression changes in the RV that may contribute to a poorer outcome in males vs. females. To test this hypothesis, male and female Wistar rats underwent either a sham procedure (sham controls) or moderate pulmonary trunk banding (PTB) (a model of pressure overload induced compensated RV hypertrophy) surgery. Seven weeks post-surgery, RV function was assessed in vivo, and tissue samples were collected for gene expression using qPCR. Compared to sham controls, PTB induced significant increases in the right ventricular systolic pressure, the filling pressure and contractility, which were similar between male and female rats. PTB resulted in an increase in RVH indexes (RV weight, RV weight/tibia length and Fulton index) in both male and female groups. However, RVH indexes were significantly higher in male-PTB when compared to female-PTB rats. Whilst end of procedure body weight was greater in male rats, end of procedure pulmonary artery (PA) diameters were the same in both males and females. RV gene expression analysis revealed that the following genes were increased in PTB-male rats compared with the sham-operated controls: natriuretic peptide A (ANP) and B (BNP), as well as the markers of fibrosis; collagen type I and III. In females, only BNP was significantly increased in the RV when compared to the sham-operated female rats. Furthermore, ANP, BNP and collagen III were significantly higher in the RV from PTB-males when compared to RV from PTB-female rats. Our data suggest that pressure overload-mediated changes in gene expression in the RV from male rats may worsen RVH and increase the susceptibility of males to a poorer outcome when compared to females.

6.
Pulm Circ ; 10(1): 2045894019897513, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095230

RESUMEN

Cardiac magnetic resonance-derived ventricular variables are predictive of mortality in pulmonary arterial hypertension. Rodent models which emphasize ventricular function, allowing serial monitoring, are needed to identify pathophysiological features and novel therapies for pulmonary arterial hypertension. We investigated longitudinal changes in the Sugen-hypoxia model during disease progression. Sprague Dawley rats (n = 32) were divided into two groups. (1) Sugen-hypoxia: a dose of subcutaneous Sugen-5416 and placed in hypobaric hypoxia for two weeks followed by normoxia for three weeks. (2) Normoxia: maintained at normal pressure for five weeks. Rats were examined at five or eight weeks with right-heart catheter, cardiac magnetic resonance, and autopsy. Compared to normoxic controls (23.9 ± 4.1 mmHg), right ventricular systolic pressure was elevated in Sugen-hypoxia rats at five and eight weeks (40.9 ± 15.5 mmHg, p = 0.026; 48.9 ± 9.6 mmHg, p = 0.002). Right ventricular end-systolic volume index was increased in eight weeks Sugen-hypoxia (0.28 ± 0.04 µlcm-2, p = 0.003) compared to normoxic controls (0.18 ±0.03 mlcm-2). There was progressive dilatation of the right ventricular at eight weeks Sugen-hypoxia compared to normoxic controls (0.75 ± 0.13 µlcm-2 vs 0.56 ± 0.1 µlcm-2 p = 0.02). Ventricle mass index by cardiac magnetic resonance at five weeks (0.34 ± 0.06, p = 0.003) and eight weeks Sugen-hypoxia (0.34 ± 0.06, p = 0.002) were higher than normoxic controls (0.21 ± 0.04). Stroke volume, right ventricular ejection fraction, and left ventricular variables were preserved in Sugen-hypoxia. Ventricular changes during the course of illness in a pulmonary arterial hypertension rodent model can be examined by cardiac magnetic resonance. These changes including right ventricular hypertrophy and subsequent dilatation are similar to those seen in pulmonary arterial hypertension patients. Despite the persisting pulmonary hypertension, there are features of adaptive cardiac remodeling through the study duration.

7.
Eur Respir J ; 53(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30923189

RESUMEN

Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension in male and female obese mice.We depleted endogenous oestrogen in leptin-deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of pulmonary hypertension, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through cytochrome P450 1B1 (CYP1B1) was inhibited with 2,2',4,6'-tetramethoxystilbene (TMS).ob/ob mice spontaneously develop pulmonary hypertension, pulmonary vascular remodelling and increased reactive oxygen species production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated pulmonary hypertension in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress, effects that are attenuated by both ANA and TMS.Obesity can induce pulmonary hypertension and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PAH.


Asunto(s)
Estrógenos/metabolismo , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Hipertensión Arterial Pulmonar/enzimología , Arteria Pulmonar/enzimología , Anastrozol , Animales , Citocromo P-450 CYP1B1/genética , Estradiol/sangre , Femenino , Hidroxiestronas/orina , Hipoxia/complicaciones , Leptina/metabolismo , Pulmón/enzimología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Obesidad/genética , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Estilbenos
8.
J Am Heart Assoc ; 8(5): e011628, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30819028

RESUMEN

Background Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia-inducible factor-1-α (HIF 1α) is a pro-proliferative mediator and may be involved in the development of human pulmonary arterial hypertension . The estrogen metabolite 2-methoxyestradiol (2 ME 2) has antiproliferative properties and is also an inhibitor of HIF 1α. Here, we examine sex differences in  HIF 1α signaling in the rat and human pulmonary circulation and determine if 2 ME 2 can inhibit HIF 1α in vivo and in vitro. Methods and Results HIF 1α signaling was assessed in male and female distal human pulmonary artery smooth muscle cells ( hPASMC s), and the effects of 2 ME 2 were also studied in female hPASMC s. The in vivo effects of 2 ME 2 in the chronic hypoxic rat (male and female) model of pulmonary hypertension were also determined. Basal HIF 1α protein expression was higher in female hPASMC s compared with male. Both factor-inhibiting HIF and prolyl hydroxylase-2 (hydroxylates HIF leading to proteosomal degradation) protein levels were significantly lower in female hPASMC s when compared with males. In vivo, 2 ME 2 ablated hypoxia-induced pulmonary hypertension in male and female rats while decreasing protein expression of HIF 1α. 2 ME 2 reduced proliferation in hPASMC s and reduced basal protein expression of HIF 1α. Furthermore, 2 ME 2 caused apoptosis and significant disruption to the microtubule network. Conclusions Higher basal HIF 1α in female hPASMC s may increase susceptibility to developing pulmonary arterial hypertension . These data also demonstrate that the antiproliferative and therapeutic effects of 2 ME 2 in pulmonary hypertension may involve inhibition of HIF 1α and/or microtubular disruption in PASMC s.


Asunto(s)
2-Metoxiestradiol/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/complicaciones , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Remodelación Vascular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Hipoxia/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Factores Sexuales , Transducción de Señal/efectos de los fármacos
9.
Am J Respir Cell Mol Biol ; 58(3): 320-330, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28956952

RESUMEN

Rats dosed with the vascular endothelial growth factor inhibitor Sugen 5416 (Su), subjected to hypoxia, and then restored to normoxia have become a widely used model of pulmonary arterial hypertension (PAH). However, the mechanism by which Su exacerbates pulmonary hypertension is unclear. We investigated Su activation of the aryl hydrocarbon receptor (AhR) in human pulmonary artery smooth muscle cells (hPASMCs) and blood outgrowth endothelial cells (BOECs) from female patients with PAH. We also examined the effect of AhR on aromatase and estrogen levels in the lung. Protein and mRNA analyses demonstrated that CYP1A1 was very highly induced in the lungs of Su/hypoxic (Su/Hx) rats. The AhR antagonist CH223191 (8 mg/kg/day) reversed the development of PAH in this model in vivo and normalized lung CYP1A1 expression. Increased lung aromatase and estrogen levels in Su/Hx rats were also normalized by CH223191, as was AhR nuclear translocator (ARNT [HIF-1ß]), which is shared by HIF-1α and AhR. Su reduced HIF-1α expression in hPASMCs. Su induced proliferation in BOECs and increased apoptosis in human pulmonary microvascular ECs and also induced translocation of AhR to the nucleus in hPASMCs. Under normoxic conditions, hPASMCs did not proliferate to Su. However, when grown in hypoxia (1%), Su induced hPASMC proliferation. In combination with hypoxia, Su is proliferative in hPASMCs and BOECs from patients with PAH, and Su/Hx-induced PAH in rats may be facilitated by AhR-induced CYP1A1, ARNT, and aromatase. Inhibition of AhR may be a novel approach to the treatment of pulmonary hypertension.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipoxia de la Célula/fisiología , Citocromo P-450 CYP1A1/biosíntesis , Hipertensión Pulmonar/patología , Indoles/toxicidad , Pirroles/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Aromatasa/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/farmacología , Compuestos Azo/farmacología , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP1A1/genética , Células Endoteliales/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Pulmón/patología , Músculo Liso Vascular/metabolismo , Pirazoles/farmacología , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
10.
Hypertension ; 68(3): 796-808, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402919

RESUMEN

Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)-induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen-Nox-dependent processes was studied in female Nox1(-/-) and Nox4(-/-) mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid-related factor 2 activity and expression of nuclear factor erythroid-related factor 2-regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1(-/-) but not Nox4(-/-) mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1(-/-) mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid-related factor 2 whereby 16αOHE1 influences hPASMC function, which when upregulated may contribute to vascular injury in PAH, particularly important in women.


Asunto(s)
Hidroxiestronas/farmacología , Hipertensión Pulmonar/fisiopatología , NADPH Oxidasas/metabolismo , NADP/metabolismo , Oxidación-Reducción/efectos de los fármacos , Animales , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Femenino , Humanos , Ratones , NADPH Oxidasa 1 , NADPH Oxidasas/genética , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Transducción de Señal , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética , Remodelación Vascular/fisiología
11.
Hypertension ; 68(2): 446-54, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27296990

RESUMEN

Females are more susceptible to pulmonary arterial hypertension than males, although the reasons remain unclear. The hypoglycemic drug, metformin, is reported to have multiple actions, including the inhibition of aromatase and stimulation of AMP-activated protein kinase. Inhibition of aromatase using anastrazole is protective in experimental pulmonary hypertension but whether metformin attenuates pulmonary hypertension through this mechanism remains unknown. We investigated whether metformin affected aromatase activity and if it could reduce the development of pulmonary hypertension in the sugen 5416/hypoxic rat model. We also investigated its influence on proliferation in human pulmonary arterial smooth muscle cells. Metformin reversed right ventricular systolic pressure, right ventricular hypertrophy, and decreased pulmonary vascular remodeling in the rat. Furthermore, metformin increased rat lung AMP-activated protein kinase signaling, decreased lung and circulating estrogen levels, levels of aromatase, the estrogen metabolizing enzyme; cytochrome P450 1B1 and its transcription factor; the aryl hydrocarbon receptor. In human pulmonary arterial smooth muscle cells, metformin decreased proliferation and decreased estrogen synthesis by decreasing aromatase activity through the PII promoter site of Cyp19a1 Thus, we report for the first time that metformin can reverse pulmonary hypertension through inhibition of aromatase and estrogen synthesis in a manner likely to be mediated by AMP-activated protein kinase.


Asunto(s)
Inhibidores de la Aromatasa , Aromatasa/metabolismo , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar , Metformina , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar , Remodelación Vascular/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Inhibidores de la Aromatasa/metabolismo , Inhibidores de la Aromatasa/farmacología , Línea Celular , Estrógenos/biosíntesis , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipoglucemiantes/farmacología , Pulmón/patología , Metformina/metabolismo , Metformina/farmacología , Ratas
12.
Pulm Circ ; 6(1): 82-92, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27162617

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT(+)) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT(+) mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT(+) mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy.

13.
Am J Respir Crit Care Med ; 191(12): 1432-42, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25871906

RESUMEN

RATIONALE: Females are predisposed to pulmonary arterial hypertension (PAH); evidence suggests that serotonin, mutations in the bone morphogenetic protein receptor (BMPR) II gene, and estrogens influence development of PAH. The 5-hydroxytryptamine 1B receptor (5-HT1BR) mediates human pulmonary artery smooth muscle cell (hPASMC) proliferation. OBJECTIVES: We aimed to determine whether selected microRNAs (miRNAs) expressed in PASMCs are influenced by sex, BMPR-II mutations, and estrogens, and contribute to PASMC proliferation in PAH. METHODS: Expression levels of miRNAs targeting genes related to PAH, estrogen, and serotonin were determined by quantitative RT-PCR in hPASMCs and mouse PASMCs harboring a heterozygous mutation in BMPR-II (BMPR-II(R899X+/-) PASMCs). miRNA-96 targets 5-HT1BR and was selected for further investigation. miRNA target validation was confirmed by luciferase reporter assay. Precursor miRNA-96 was transfected into hPASMCs to examine effects on proliferation and 5-HT1BR expression. The effect of a miRNA-96 mimic on the development of hypoxic pulmonary hypertension in mice was also assessed. MEASUREMENTS AND MAIN RESULTS: miRNA-96 expression was reduced in BMPR-II(R899X+/-) PASMCs from female mice and hPASMCs from female patients with PAH; this was associated with increased 5-HT1BR expression and serotonin-mediated proliferation. 5-HT1BR was validated as a target for miRNA-96. Transfection of precursor miRNA-96 into hPASMCs reduced 5-HT1BR expression and inhibited serotonin-induced proliferation. Restoration of miRNA-96 expression in pulmonary arteries in vivo via administration of an miRNA-96 mimic reduced the development of hypoxia-induced pulmonary hypertension in the mouse. CONCLUSIONS: Increased 5-HT1BR expression may be a consequence of decreased miRNA-96 expression in female patient PASMCs, and this may contribute to the development of PAH.


Asunto(s)
Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , MicroARNs/metabolismo , Receptor de Serotonina 5-HT1B/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Caracteres Sexuales , Transducción de Señal/fisiología
14.
Cardiovasc Res ; 106(2): 206-16, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25765937

RESUMEN

AIMS: Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2(+/-) mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. METHODS AND RESULTS: By immunohistochemistry, we showed that ERα, ERß, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17ß-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT(+) mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT(+) mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. CONCLUSION: ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptor alfa de Estrógeno/metabolismo , Hipertensión Pulmonar/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo
15.
Am J Respir Crit Care Med ; 190(4): 456-67, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24956156

RESUMEN

RATIONALE: The incidence of pulmonary arterial hypertension is greater in women, suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males, exogenously administered estrogen can protect against pulmonary hypertension (PH). However, in models that display female susceptibility, estrogens may play a causative role. OBJECTIVES: To clarify the influence of endogenous estrogen and sex in PH and assess the therapeutic potential of a clinically available aromatase inhibitor. METHODS: We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH: the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of sex on pulmonary expression of aromatase in these models and in lungs from patients with pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS: Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was caused by reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor α also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased bone morphogenetic protein receptor 2 and Id1 expression compared with male. Anastrozole treatment reversed the impaired bone morphogenetic protein receptor 2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared with male. CONCLUSIONS: The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential.


Asunto(s)
Estrógenos/sangre , Hipertensión Pulmonar/sangre , Anastrozol , Animales , Inhibidores de la Aromatasa/sangre , Inhibidores de la Aromatasa/farmacología , Western Blotting/métodos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Hipertensión Pulmonar/complicaciones , Hipoxia/sangre , Hipoxia/complicaciones , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrilos/sangre , Nitrilos/farmacología , Reacción en Cadena de la Polimerasa/métodos , Ratas , Ratas Wistar , Factores Sexuales , Triazoles/sangre , Triazoles/farmacología
16.
Cardiovasc Res ; 99(1): 24-34, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23519266

RESUMEN

AIMS: Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH. METHODS AND RESULTS: Dfen (5 mg kg(-1) day(-1) PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1(-/-) mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17ß-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17ß-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice. CONCLUSION: CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Dexfenfluramina , Hipertensión Pulmonar/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Animales , Presión Arterial , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/deficiencia , Hidrocarburo de Aril Hidroxilasas/genética , Proliferación Celular , Células Cultivadas , Citocromo P-450 CYP1B1 , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Estradiol/farmacología , Hipertensión Pulmonar Primaria Familiar , Femenino , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Norfenfluramina/toxicidad , Ovariectomía , Arteria Pulmonar/enzimología , Arteria Pulmonar/fisiopatología , Serotonina/metabolismo , Factores Sexuales , Triptófano Hidroxilasa/metabolismo , Función Ventricular Derecha , Presión Ventricular
17.
Circulation ; 126(9): 1087-98, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22859684

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a hyperproliferative vascular disorder observed predominantly in women. Estrogen is a potent mitogen in human pulmonary artery smooth muscle cells and contributes to PAH in vivo; however, the mechanisms attributed to this causation remain obscure. Curiously, heightened expression of the estrogen-metabolizing enzyme cytochrome P450 1B1 (CYP1B1) is reported in idiopathic PAH and murine models of PAH. METHODS AND RESULTS: Here, we investigated the putative pathogenic role of CYP1B1 in PAH. Quantitative reverse transcription-polymerase chain reaction, immunoblotting, and in situ analysis revealed that pulmonary CYP1B1 is increased in hypoxic PAH, hypoxic+SU5416 PAH, and human PAH and is highly expressed within the pulmonary vascular wall. PAH was assessed in mice via measurement of right ventricular hypertrophy, pulmonary vascular remodeling, and right ventricular systolic pressure. Hypoxic PAH was attenuated in CYP1B1(-/-) mice, and the potent CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS; 3 mg · kg(-1) · d(-1) IP) significantly attenuated hypoxic PAH and hypoxic+SU5416 PAH in vivo. TMS also abolished estrogen-induced proliferation in human pulmonary artery smooth muscle cells and PAH-pulmonary artery smooth muscle cells. The estrogen metabolite 16α-hydroxyestrone provoked human pulmonary artery smooth muscle cell proliferation, and this mitogenic effect was greatly pronounced in PAH-pulmonary artery smooth muscle cells. ELISA analysis revealed that 16α-hydroxyestrone concentration was elevated in PAH, consistent with CYP1B1 overexpression and activity. Finally, administration of the CYP1B1 metabolite 16α-hydroxyestrone (1.5 mg · kg(-1) · d(-1) IP) caused the development of PAH in mice. CONCLUSIONS: Increased CYP1B1-mediated estrogen metabolism promotes the development of PAH, likely via the formation of mitogens, including 16α-hydroxyestrone. Collectively, this study reveals a possible novel therapeutic target in clinical PAH.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/fisiología , Estrógenos/metabolismo , Hipertensión Pulmonar/enzimología , Arteria Pulmonar/enzimología , Animales , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Hidrocarburo de Aril Hidroxilasas/deficiencia , Hidrocarburo de Aril Hidroxilasas/genética , Hipoxia de la Célula , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Enfermedad Crónica , Citocromo P-450 CYP1B1 , Inducción Enzimática , Estradiol/farmacología , Femenino , Humanos , Hidroxiestronas/metabolismo , Hidroxiestronas/farmacología , Hidroxiestronas/toxicidad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/enzimología , Hipoxia/complicaciones , Pulmón/enzimología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estilbenos/farmacología , Regulación hacia Arriba
18.
Mol Ther ; 20(8): 1516-28, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22525513

RESUMEN

Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Terapia Genética/métodos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Hipoxia/fisiopatología , Triptófano Hidroxilasa/metabolismo , Adenoviridae/genética , Animales , Bovinos , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar , Vectores Genéticos/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Ratas , Triptófano Hidroxilasa/genética
19.
Respir Res ; 12: 159, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185646

RESUMEN

BACKGROUND: Idiopathic and familial forms of pulmonary arterial hypertension (PAH) occur more frequently in women than men. However, the reason for this remains unknown. Both the calcium binding protein S100A4/Mts1 (Mts1) and its endogenous receptor (receptor for advanced glycosylation end products; RAGE) have been implicated in the development of PAH. We wished to investigate if the Mts1/RAGE pathway may play a role in the gender bias associated with PAH. METHODS: We investigated the effects of gender on development of PAH in mice over-expressing Mts1 (Mts1+ mice) via measurement of pulmonary arterial remodeling, systolic right ventricular pressure (sRVP) and right ventricular hypertrophy (RVH). Gender differences in pulmonary arterial Mts1 and RAGE expression were assessed by qRT-PCR and immunohistochemistry. Western blotting and cell counts were used to investigate interactions between 17ß-estradiol, Mts1 and RAGE on proliferation of human pulmonary artery smooth muscle cells (hPASMCs). Statistical analysis was by one-way analysis of variance with Dunnetts post test or two-way analysis of variance with Bonferronis post test, as appropriate. RESULTS: Female Mts1+ mice developed increased sRVP and pulmonary vascular remodeling, whereas male Mts1+ mice remained unaffected. The development of plexiform-like lesions in Mts1+ mice was specific to females. These lesions stained positive for both Mts1 and RAGE in the endothelial and adventitial layers. Expression of pulmonary arterial Mts1 was greater in female than male Mts1+ mice, and was localised to the medial and adventitial layers in non plexiform-like pulmonary arteries. RAGE gene expression and immunoreactivity were similar between male and female Mts1+ mice and RAGE staining was localised to the endothelial layer in non plexiform-like pulmonary arteries adjacent to airways. In non-plexiform like pulmonary arteries not associated with airways RAGE staining was present in the medial and adventitial layers. Physiological concentrations of 17ß-estradiol increased Mts1 expression in hPASMCs. 17ß-estradiol-induced hPASMC proliferation was inhibited by soluble RAGE, which antagonises the membrane bound form of RAGE. CONCLUSIONS: Mts1 over-expression combined with female gender is permissive to the development of experimental PAH in mice. Up-regulation of Mts1 and subsequent activation of RAGE may contribute to 17ß-estradiol-induced proliferation of hPASMCs.


Asunto(s)
Presión Sanguínea , Hipertensión Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Proteínas S100/metabolismo , Análisis de Varianza , Animales , Presión Sanguínea/genética , Western Blotting , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Estradiol/metabolismo , Hipertensión Pulmonar Primaria Familiar , Femenino , Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Factores Sexuales , Transducción de Señal , Regulación hacia Arriba , Función Ventricular Derecha , Presión Ventricular
20.
Physiol Genomics ; 43(8): 417-37, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21303932

RESUMEN

Pulmonary arterial hypertension (PAH) is up to threefold more prevalent in women than men. Female mice overexpressing the serotonin transporter (SERT; SERT+ mice) exhibit PAH and exaggerated hypoxia-induced PAH, whereas male SERT+ mice remain unaffected. To further investigate these sex differences, microarray analysis was performed in the pulmonary arteries of normoxic and chronically hypoxic female and male SERT+ mice. Quantitative RT-PCR analysis was employed for validation of the microarray data. In relevant groups, immunoblotting was performed for genes of interest (CEBPß, CYP1B1, and FOS). To translate clinical relevance to our findings, CEBPß, CYP1B1, and FOS mRNA and protein expression was assessed in pulmonary artery smooth muscle cells (PASMCs) derived from idiopathic PAH (IPAH) patients and controls. In female SERT+ mice, multiple pathways with relevance to PAH were altered. This was also observed in chronically hypoxic female SERT+ mice. We selected 10 genes of interest for qRT-PCR analysis (FOS, CEBPß, CYP1B1, MYL3, HAMP2, LTF, PLN, NPPA, UCP1, and C1S), and 100% concordance was reported. Protein expression of three selected genes, CEBPß, CYP1B1, FOS, was also upregulated in female SERT+ mice. Serotonin and 17ß-estradiol increased CEBPß, CYP1B1, and FOS protein expression in PASMCs. In addition, CEBPß, CYP1B1, and FOS mRNA and protein expression was also increased in PASMCs derived from IPAH patients. Here, we have identified a number of genes that may predispose female SERT+ mice to PAH, and these findings may also be relevant to human PAH.


Asunto(s)
Hipoxia/complicaciones , Análisis por Micromatrices/métodos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Animales Modificados Genéticamente/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Técnicas de Cultivo de Célula , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Citocromo P-450 CYP1B1 , Estrógenos/genética , Hipertensión Pulmonar Primaria Familiar , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Hipertensión Pulmonar/genética , Masculino , Ratones , Proteínas Proto-Oncogénicas c-fes/metabolismo , Sexo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA