Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17553, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080459

RESUMEN

Osteoarthritis (OA) is a chronic disease due to the deterioration of cartilage structure and function, involving the progressive degradation of the cartilage extracellular matrix. Cathepsins, lysosomal cysteine proteases, play pivotal roles in various biological and pathological processes, particularly in protein degradation. Excess cathepsins levels are reported to contribute to the development of OA. However, the causal relationship between the cathepsin family and knee and hip OA remains uncertain. Therefore, this study utilized bidirectional Mendelian Randomization (MR) analyses to explore this causal association. Our results indicated that elevated serum levels of cathepsin O increase the overall risk of knee OA, while increased serum levels of cathepsin H enhance the risk of hip OA. Conversely, the reverse MR analyses did not reveal a reverse causal relationship between them. In summary, OA in different anatomical locations may genetically result from pathological elevations in different serum cathepsin isoforms, which could be utilized as diagnostic and therapeutic targets in clinical practice.


Asunto(s)
Catepsinas , Análisis de la Aleatorización Mendeliana , Osteoartritis de la Cadera , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Cadera/genética , Osteoartritis de la Cadera/sangre , Osteoartritis de la Cadera/diagnóstico , Catepsinas/sangre , Catepsinas/genética , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/sangre , Osteoartritis de la Rodilla/diagnóstico , Predisposición Genética a la Enfermedad , Femenino , Masculino , Polimorfismo de Nucleótido Simple , Biomarcadores/sangre
2.
Front Med (Lausanne) ; 11: 1292473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695024

RESUMEN

Osteoarthritis (OA) is distinguished by pathological alterations in the synovial membrane, articular cartilage, and subchondral bone, resulting in physical symptoms such as pain, deformity, and impaired mobility. Numerous research studies have validated the effectiveness of low-intensity pulsed ultrasound (LIPUS) in OA treatment. The periodic mechanical waves generated by LIPUS can mitigate cellular ischemia and hypoxia, induce vibration and collision, produce notable thermal and non-thermal effects, alter cellular metabolism, expedite tissue repair, improve nutrient delivery, and accelerate the healing process of damaged tissues. The efficacy and specific mechanism of LIPUS is currently under investigation. This review provides an overview of LIPUS's potential role in the treatment of OA, considering various perspectives such as the synovial membrane, cartilage, subchondral bone, and tissue engineering. It aims to facilitate interdisciplinary scientific research and further exploration of LIPUS as a complementary technique to existing methods or surgery. Ongoing research is focused on determining the optimal dosage, frequency, timing, and treatment strategy of LIPUS for OA. Additional research is required to clarify the precise mechanism of action and potential impacts on cellular, animal, and human systems prior to its integration into therapeutic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA