Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Immunol ; 15: 1374301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835765

RESUMEN

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.


Asunto(s)
VIH-1 , Ratones Transgénicos , Monoacilglicerol Lipasas , Enfermedades Neuroinflamatorias , Animales , Ratones , VIH-1/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Femenino , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Infecciones por VIH/tratamiento farmacológico , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/virología , Encéfalo/patología , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Microglía/metabolismo , Complejo SIDA Demencia/tratamiento farmacológico
2.
Nat Commun ; 15(1): 4605, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816388

RESUMEN

Obesity-induced inflammation causes metabolic dysfunction, but the mechanisms remain elusive. Here we show that the innate immune transcription factor interferon regulatory factor (IRF3) adversely affects glucose homeostasis through induction of the endogenous FAHFA hydrolase androgen induced gene 1 (AIG1) in adipocytes. Adipocyte-specific knockout of IRF3 protects male mice against high-fat diet-induced insulin resistance, whereas overexpression of IRF3 or AIG1 in adipocytes promotes insulin resistance on a high-fat diet. Furthermore, pharmacological inhibition of AIG1 reversed obesity-induced insulin resistance and restored glucose homeostasis in the setting of adipocyte IRF3 overexpression. We, therefore, identify the adipocyte IRF3/AIG1 axis as a crucial link between obesity-induced inflammation and insulin resistance and suggest an approach for limiting the metabolic dysfunction accompanying obesity.


Asunto(s)
Adipocitos , Dieta Alta en Grasa , Inflamación , Resistencia a la Insulina , Factor 3 Regulador del Interferón , Ratones Noqueados , Obesidad , Animales , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Masculino , Obesidad/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Adipocitos/metabolismo , Ratones Endogámicos C57BL , Glucosa/metabolismo , Células 3T3-L1
3.
Nat Chem Biol ; 19(12): 1469-1479, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37349583

RESUMEN

Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.


Asunto(s)
Bacteroides thetaiotaomicron , Diabetes Mellitus Tipo 2 , Humanos , Dipeptidil Peptidasa 4/genética , Serina
4.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187608

RESUMEN

NOD2 is an intracellular innate immune receptor that senses bacterial peptidoglycans. Although soluble in the cytosol, a portion of the protein is associated with the plasma membrane and endosomal compartments for microbial surveillance. Palmitoylation of NOD2 by zDHHC5 promotes its membrane recruitment to drive proinflammatory and antimicrobial responses to pathogenic invasion. A depalmitoylation step by an unknown protein, thioesterase, releases NOD2 from membranes into the cytosol, where the protein can then enter a new cycle of palmitoylation-depalmitoylation. Here, we identify α/ß -hydrolase domain-containing protein 17 isoforms (ABHD17A, 17B, 17C) as the thioesterases responsible for depalmitoylation of NOD2. Inhibiting ABHD17 increased the plasmalemmal localization of both wild-type NOD2 and a subset of hypo-palmitoylated Crohn's disease-associated variants, resulting in increased NF-κB activation and production of pro-inflammatory cytokines in epithelial cells. These results suggest that targeted inhibition of ABHD17 may rescue some Crohn's disease-associated NOD2 variants.

5.
Cells ; 11(5)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269478

RESUMEN

(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.


Asunto(s)
Cannabinoides , Infecciones por VIH , Amidohidrolasas , Animales , Cannabinoides/farmacología , Endocannabinoides/metabolismo , Inhibidores Enzimáticos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperidinas , Piridinas , Receptores de Cannabinoides , Transmisión Sináptica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
6.
Front Neurol ; 12: 651272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484091

RESUMEN

While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(-) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(-) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.

7.
Cell Chem Biol ; 28(10): 1501-1513.e5, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34043961

RESUMEN

The intracellular protozoan parasite Toxoplasma gondii must scavenge cholesterol and other lipids from the host to facilitate intracellular growth and replication. Enzymes responsible for neutral lipid synthesis have been identified but there is no evidence for enzymes that catalyze lipolysis of cholesterol esters and esterified lipids. Here, we characterize several T. gondii serine hydrolases with esterase and thioesterase activities that were previously thought to be depalmitoylating enzymes. We find they do not cleave palmitoyl thiol esters but rather hydrolyze short-chain lipid esters. Deletion of one of the hydrolases results in alterations in levels of multiple lipids species. We also identify small-molecule inhibitors of these hydrolases and show that treatment of parasites results in phenotypic defects reminiscent of parasites exposed to excess cholesterol or oleic acid. Together, these data characterize enzymes necessary for processing lipids critical for infection and highlight the potential for targeting parasite hydrolases for therapeutic applications.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Proteínas Protozoarias/metabolismo , Serina Endopeptidasas/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Hidrólisis , Cinética , Filogenia , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Serina Endopeptidasas/clasificación , Serina Endopeptidasas/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Especificidad por Sustrato , Toxoplasma/crecimiento & desarrollo , Toxoplasma/fisiología
8.
Nat Chem Biol ; 17(8): 856-864, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33927411

RESUMEN

Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.


Asunto(s)
Membrana Celular/metabolismo , Hidrolasas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteínas ras/metabolismo , Proliferación Celular , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/patología , Lipoilación , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular
9.
Cell Rep ; 31(12): 107805, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579931

RESUMEN

In the adult ventricular-subventricular zone (V-SVZ), neural stem cells (NSCs) generate new olfactory bulb (OB) neurons and glia throughout life. To map adult neuronal lineage progression, we profiled >56,000 V-SVZ and OB cells by single-cell RNA sequencing (scRNA-seq). Our analyses reveal the molecular diversity of OB neurons, including fate-mapped neurons, lineage progression dynamics, and an NSC intermediate enriched for Notum, which encodes a secreted WNT antagonist. SCOPE-seq technology, which links live-cell imaging with scRNA-seq, uncovers cell-size transitions during NSC differentiation and preferential NOTUM binding to proliferating neuronal precursors. Consistently, application of NOTUM protein in slice cultures and pharmacological inhibition of NOTUM in slice cultures and in vivo demonstrated that NOTUM negatively regulates V-SVZ proliferation. Timely, context-dependent neurogenesis demands adaptive signaling among neighboring progenitors. Our findings highlight a critical regulatory state during NSC activation marked by NOTUM, which attenuates WNT-stimulated proliferation in NSC progeny.


Asunto(s)
Envejecimiento/metabolismo , Linaje de la Célula , Esterasas/metabolismo , Ventrículos Laterales/citología , Neurogénesis , Análisis de la Célula Individual , Animales , Proliferación Celular , Regulación de la Expresión Génica , Genes Reporteros , Ratones Endogámicos C57BL , Neuronas/metabolismo , Bulbo Olfatorio/citología
10.
J Biol Chem ; 295(18): 5891-5905, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32152231

RESUMEN

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS-based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.


Asunto(s)
Esterasas/metabolismo , Ésteres/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Esterasas/deficiencia , Esterasas/genética , Técnicas de Inactivación de Genes , Hidrólisis , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones
11.
J Neuroimmune Pharmacol ; 14(4): 661-678, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31372820

RESUMEN

In the era of combined antiretroviral therapy, HIV-1 infected individuals are living longer lives; however, longevity is met with an increasing number of HIV-1 associated neurocognitive disorders (HAND) diagnoses. The transactivator of transcription (Tat) is known to mediate the neurotoxic effects in HAND by acting directly on neurons and also indirectly via its actions on glia. The Go/No-Go (GNG) task was used to examine HAND in the Tat transgenic mouse model. The GNG task involves subjects discriminating between two stimuli sets in order to determine whether or not to inhibit a previously trained response. Data reveal inhibitory control deficits in female Tat(+) mice (p = .048) and an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group (p < .05). A significant negative correlation was noted between inhibitory control and IL CB1R expression (r = -.543, p = .045), with CB1R expression predicting 30% of the variance of inhibitory control (R2 = .295, p = .045). Furthermore, there was a significant increase in spontaneous excitatory postsynaptic current (sEPSC) frequencies in Tat(+) compared to Tat(-) mice (p = .008, across sexes). The increase in sEPSC frequency was significantly attenuated by bath application of PF3845, a fatty acid amide hydrolase (FAAH) enzyme inhibitor (p < .001). Overall, the GNG task is a viable measure to assess inhibitory control deficits in Tat transgenic mice and results suggest a potential therapeutic treatment for the observed deficits with drugs which modulate endocannabinoid enzyme activity. Graphical Abstract Results of the Go/No-Go operant conditioning task reveal inhibitory control deficits in female transgenic Tat(+) mice without significantly affecting males. The demonstrated inhibitory control deficits appear to be associated with an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group.


Asunto(s)
Complejo SIDA Demencia/metabolismo , Modelos Animales de Enfermedad , VIH-1 , Inhibición Psicológica , Receptor Cannabinoide CB1/biosíntesis , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/biosíntesis , Complejo SIDA Demencia/genética , Complejo SIDA Demencia/psicología , Animales , Femenino , Lóbulo Límbico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/metabolismo , Desempeño Psicomotor/fisiología , Receptor Cannabinoide CB1/genética , Regulación hacia Arriba/fisiología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
12.
SLAS Technol ; 24(5): 489-498, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199699

RESUMEN

Accurate measurement of drug-target interactions in vivo is critical for both preclinical development and translation to clinical studies, yet many assays rely on indirect measures such as biomarkers associated with target activity. Activity-based protein profiling (ABPP) is a direct method of quantifying enzyme activity using active site-targeted small-molecule covalent probes that selectively label active but not inhibitor-bound enzymes. Probe-labeled enzymes in complex proteomes are separated by polyacrylamide gel electrophoresis and quantified by fluorescence imaging. To accelerate workflows and avoid imaging artifacts that make conventional gels challenging to quantify, we adapted protocols for a commercial LabChip GXII microfluidic instrument to permit electrophoretic separation of probe-labeled proteins in tissue lysates and plasma, and quantification of fluorescence (probe/protein labeling ratio of 1:1). Electrophoretic separation on chips occurred in 40 s per sample, and instrument software automatically identified and quantified peaks, resulting in an overall time savings of 3-5 h per 96-well sample plate. Calculated percent inhibition was not significantly different between the two formats. Chip performance was consistent between chips and sample replicates. Conventional gel imaging was more sensitive but required five times higher sample volume than microfluidic chips. Microfluidic chips produced results comparable to those of gels but with much lower sample consumption, facilitating assay miniaturization for scarce biological samples. The time savings afforded by microfluidic electrophoresis and automatic quantification has allowed us to incorporate microfluidic ABPP early in the drug discovery workflow, enabling routine assessments of tissue distribution and engagement of targets and off-targets in vivo.


Asunto(s)
Microfluídica/métodos , Proteómica/métodos , Algoritmos , Animales , Bioensayo , Ratones , Peso Molecular , Reproducibilidad de los Resultados
13.
J Pharmacol Exp Ther ; 367(3): 494-508, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30305428

RESUMEN

Monoacylglycerol lipase (MGLL) is the primary degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). The first MGLL inhibitors have recently entered clinical development for the treatment of neurologic disorders. To support this clinical path, we report the pharmacological characterization of the highly potent and selective MGLL inhibitor ABD-1970 [1,1,1,3,3,3-hexafluoropropan-2-yl 4-(2-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-4-chlorobenzyl)piperazine-1-carboxylate]. We used ABD-1970 to confirm the role of MGLL in human systems and to define the relationship between MGLL target engagement, brain 2-AG concentrations, and efficacy. Because MGLL contributes to arachidonic acid metabolism in a subset of rodent tissues, we further used ABD-1970 to evaluate whether selective MGLL inhibition would affect prostanoid production in several human assays known to be sensitive to cyclooxygenase inhibitors. ABD-1970 robustly elevated brain 2-AG content and displayed antinociceptive and antipruritic activity in a battery of rodent models (ED50 values of 1-2 mg/kg). The antinociceptive effects of ABD-1970 were potentiated when combined with analgesic standards of care and occurred without overt cannabimimetic effects. ABD-1970 also blocked 2-AG hydrolysis in human brain tissue and elevated 2-AG content in human blood without affecting stimulated prostanoid production. These findings support the clinical development of MGLL inhibitors as a differentiated mechanism to treat pain and other neurologic disorders.


Asunto(s)
Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Analgésicos/farmacología , Animales , Antipruriginosos/farmacología , Ácidos Araquidónicos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Inhibidores de la Ciclooxigenasa/farmacología , Glicéridos/metabolismo , Humanos , Hidrólisis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Células PC-3 , Dolor/tratamiento farmacológico , Dolor/metabolismo , Piperidinas/farmacología , Prostaglandinas/farmacología , Ratas , Ratas Sprague-Dawley , Roedores
14.
Neuropharmacology ; 141: 55-65, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30114402

RESUMEN

The HIV-1 transactivator of transcription (Tat) is a neurotoxin involved in the pathogenesis of HIV-1 associated neurocognitive disorders (HAND). The neurotoxic effects of Tat are mediated directly via AMPA/NMDA receptor activity and indirectly through neuroinflammatory signaling in glia. Emerging strategies in the development of neuroprotective agents involve the modulation of the endocannabinoid system. A major endocannabinoid, anandamide (N-arachidonoylethanolamine, AEA), is metabolized by fatty acid amide hydrolase (FAAH). Here we demonstrate using a murine prefrontal cortex primary culture model that the inhibition of FAAH, using PF3845, attenuates Tat-mediated increases in intracellular calcium, neuronal death, and dendritic degeneration via cannabinoid receptors (CB1R and CB2R). Live cell imaging was used to assess Tat-mediated increases in [Ca2+]i, which was significantly reduced by PF3845. A time-lapse assay revealed that Tat potentiates cell death while PF3845 blocks this effect. Additionally PF3845 blocked the Tat-mediated increase in activated caspase-3 (apoptotic marker) positive neurons. Dendritic degeneration was characterized by analyzing stained dendritic processes using Imaris and Tat was found to significantly decrease the size of processes while PF3845 inhibited this effect. Incubation with CB1R and CB2R antagonists (SR141716A and AM630) revealed that PF3845-mediated calcium effects were dependent on CB1R, while reduced neuronal death and degeneration was CB2R-mediated. PF3845 application led to increased levels of AEA, suggesting the observed effects are likely a result of increased endocannabinoid signaling at CB1R/CB2R. Our findings suggest that modulation of the endogenous cannabinoid system through inhibition of FAAH may be beneficial in treatment of HAND.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/patología , Amidohidrolasas/antagonistas & inhibidores , VIH-1/patogenicidad , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/toxicidad , Síndrome de Inmunodeficiencia Adquirida/enzimología , Animales , Ácidos Araquidónicos , Calcio/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Endocannabinoides/farmacología , Indoles/farmacología , Ratones , Degeneración Nerviosa/patología , Piperidinas/antagonistas & inhibidores , Piperidinas/farmacología , Alcamidas Poliinsaturadas , Corteza Prefrontal/enzimología , Corteza Prefrontal/metabolismo , Cultivo Primario de Células , Piridinas/antagonistas & inhibidores , Piridinas/farmacología , Rimonabant/farmacología
15.
J Pharmacol Exp Ther ; 366(1): 169-183, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29540562

RESUMEN

Although paclitaxel effectively treats various cancers, its debilitating peripheral neuropathic pain side effects often persist long after treatment has ended. Therefore, a compelling need exists for the identification of novel pharmacologic strategies to mitigate this condition. As inhibitors of monoacylglycerol lipase (MAGL), the primary hydrolytic enzyme of the endogenous cannabinoid, 2-arachidonyolglycerol, produces antinociceptive effects in numerous rodent models of pain, we investigated whether inhibitors of this enzyme (i.e., JZL184 and MJN110) would reverse paclitaxel-induced mechanical allodynia in mice. These drugs dose dependently reversed allodynia with respective ED50 values (95% confidence limit) of 8.4 (5.2-13.6) and 1.8 (1.0-3.3) mg/kg. Complementary genetic and pharmacologic approaches revealed that the antiallodynic effects of each drug require both cannabinoid receptors, CB1 and CB2 MJN110 reduced paclitaxel-mediated increased expression of monocyte chemoattractant protein-1 (MCP-1, CCL2) and phospho-p38 MAPK in dorsal root ganglia as well as MCP-1 in spinal dorsal horn. Whereas the antinociceptive effects of high dose JZL184 (40 mg/kg) underwent tolerance following 6 days of repeated dosing, repeated administration of a threshold dose (i.e., 4 mg/kg) completely reversed paclitaxel-induced allodynia. In addition, we found that the administration of MJN110 to control mice lacked intrinsic rewarding effects in the conditioned place preference (CPP) paradigm. However, it produced a CPP in paclitaxel-treated animals, suggesting a reduced paclitaxel-induced aversive state. Importantly, JZL184 did not alter the antiproliferative and apoptotic effects of paclitaxel in A549 and H460 non-small cell lung cancer cells. Taken together, these data indicate that MAGL inhibitors reverse paclitaxel-induced neuropathic pain without interfering with chemotherapeutic efficacy.


Asunto(s)
Antineoplásicos/efectos adversos , Inhibidores Enzimáticos/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Monoacilglicerol Lipasas/antagonistas & inhibidores , Nocicepción/efectos de los fármacos , Paclitaxel/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Biomarcadores/metabolismo , Carbamatos/farmacología , Carbamatos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Inflamación/metabolismo , Masculino , Ratones , Fosfoproteínas/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Succinimidas/farmacología , Succinimidas/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Neuropharmacology ; 125: 80-86, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28673548

RESUMEN

Substantial challenges exist for investigating the cannabinoid receptor type 1 (CB1)-mediated discriminative stimulus effects of the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA), compared with exogenous CB1 receptor agonists, such as Δ9-tetrahydrocannabinol (THC) and the synthetic cannabinoid CP55,940. Specifically, each endocannabinoid is rapidly degraded by the respective hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). Whereas MAGL inhibitors partially substitute for THC and fully substitute for CP55,940, FAAH inhibitors do not substitute for either drug. Interestingly, combined FAAH-MAGL inhibition results in full THC substitution, and the dual FAAH-MAGL inhibitor SA-57 serves as its own discriminative training stimulus. Because MAGL inhibitors fully substitute for SA-57, we tested whether the selective MAGL inhibitor MJN110 would serve as a training stimulus. Twelve of 13 C57BL/6J mice learned to discriminate MJN110 from vehicle, and the CB1 receptor antagonist rimonabant dose-dependently blocked its discriminative stimulus. CP55,940, SA-57, and another MAGL inhibitor JZL184, fully substituted for MJN110. In contrast, the FAAH inhibitor PF-3845 failed to substitute for the MJN110 discriminative stimulus, but produced a 1.6 (1.1-2.2; 95% confidence interval) leftward shift in the MJN110 dose-response curve. Inhibitors of other relevant enzymes (i.e., ABHD6, COX-2) and nicotine did not engender substitution. Diazepam partially substituted for MJN110, but rimonabant failed to block this partial effect. These findings suggest that MAGL normally throttles 2-AG stimulation of CB1 receptors to a magnitude insufficient to produce cannabimimetic subjective effects. Accordingly, inhibitors of this enzyme may release this endogenous brake producing effects akin to those produced by exogenously administered cannabinoids.


Asunto(s)
Carbamatos/farmacología , Discriminación en Psicología/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Succinimidas/farmacología , Acetamidas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Benzodioxoles/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Ciclohexanoles/farmacología , Ciclooxigenasa 2/metabolismo , Discriminación en Psicología/fisiología , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Masculino , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Rimonabant
17.
Neuropharmacology ; 114: 156-167, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27890602

RESUMEN

Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB)1 and CB2 receptors; however, only CB2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present study suggest that inhibition of endocannabinoid degradative enzymes represents a promising therapeutic approach to decrease effective doses of opioids needed for clinical pain control, and may also possess therapeutic potential to reduce opioid abuse.


Asunto(s)
Acetamidas/administración & dosificación , Analgésicos Opioides/administración & dosificación , Analgésicos/administración & dosificación , Carbamatos/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Endocannabinoides/metabolismo , Heroína/administración & dosificación , Morfina/administración & dosificación , Neuralgia/prevención & control , Animales , Ácido Araquidónico/metabolismo , Ácidos Araquidónicos/metabolismo , Carragenina , Relación Dosis-Respuesta a Droga , Glicéridos/metabolismo , Hidrólisis , Hiperalgesia/prevención & control , Inflamación/inducido químicamente , Inflamación/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/etiología , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/fisiología , Nervio Ciático/lesiones , Autoadministración
18.
Br J Pharmacol ; 173(21): 3134-3144, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27501482

RESUMEN

BACKGROUND AND PURPOSE: Chronic pain is often a symptom of knee osteoarthritis (OA) for which current analgesics are either inadequate or are associated with serious side effects. The endocannabinoid system may offer alternative targets for pain relief. We evaluated the effects of a potent and selective monoacylglycerol (MAG) lipase inhibitor (MJN110) on OA pain behaviour, spinal mechanisms of action and joint histopathology in the rat. EXPERIMENTAL APPROACH: Intra-articular injection of monosodium iodoacetate (MIA) models OA pain and mimics clinical joint pathology. Effects of MJN110 on MIA-induced weight-bearing asymmetry and lowered paw withdrawal thresholds (PWTs), changes in spinal gene expression and brain levels of relevant lipids were determined. KEY RESULTS: Acute MJN110 (5 mg·kg-1 ) significantly reversed MIA-induced weight-bearing asymmetry (MIA/vehicle: 68 ± 6 g; MIA/MJN110: 35 ± 4 g) and lowered ipsilateral PWTs (MIA/vehicle: 7 ± 0.8 g; MIA/MJN110: 11 ± 0.6 g), via both CB1 and CB2 receptors. Repeated treatment with MJN110 (5 mg·kg-1 ) resulted in anti-nociceptive tolerance. A lower dose of MJN110 (1 mg·kg-1 ) acutely inhibited pain behaviour, which was maintained for 1 week of repeated administration but had no effect on joint histology. MJN110 significantly inhibited expression of membrane-associated PGE synthase-1 in the ipsilateral dorsal horn of the spinal cord of MIA rats, compared with vehicle-treated MIA rats. Both doses of MJN110 significantly elevated brain levels of the endocannabinoid 2-arachidonoylglycerol. CONCLUSIONS AND IMPLICATIONS: Our data support further assessment of the therapeutic potential of MAG lipase inhibitors for the treatment of OA pain.


Asunto(s)
Analgésicos/farmacología , Inhibidores Enzimáticos/farmacología , Ácido Yodoacético/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Analgésicos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Inyecciones Intraarticulares , Ácido Yodoacético/administración & dosificación , Masculino , Monoacilglicerol Lipasas/metabolismo , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley
19.
J Pharmacol Exp Ther ; 358(2): 306-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27307500

RESUMEN

Whereas the inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the respective major hydrolytic enzymes of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), elicits no or partial substitution for Δ(9)-tetrahydrocannabinol (THC) in drug-discrimination procedures, combined inhibition of both enzymes fully substitutes for THC, as well as produces a constellation of cannabimimetic effects. The present study tested whether C57BL/6J mice would learn to discriminate the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) from vehicle in the drug-discrimination paradigm. In initial experiments, 10 mg/kg SA-57 fully substituted for CP55,940 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a high-efficacy CB1 receptor agonist in C57BL/6J mice and for AEA in FAAH (-/-) mice. Most (i.e., 23 of 24) subjects achieved criteria for discriminating SA-57 (10 mg/kg) from vehicle within 40 sessions, with full generalization occurring 1 to 2 hours postinjection. CP55,940, the dual FAAH-MAGL inhibitor JZL195 (4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate), and the MAGL inhibitors MJN110 (2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate) and JZL184 (4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) fully substituted for SA-57. Although the FAAH inhibitors PF-3845 ((N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) and URB597 (cyclohexylcarbamic acid 3'-(aminocarbonyl)-[1,1'-biphenyl]-3-yl ester) did not substitute for SA-57, PF-3845 produced a 2-fold leftward shift in the MJN110 substitution dose-response curve. In addition, the CB1 receptor antagonist rimonabant blocked the generalization of SA-57, as well as substitution of CP55,940, JZL195, MJN110, and JZL184. These findings suggest that MAGL inhibition plays a major role in the CB1 receptor-mediated SA-57 training dose, which is further augmented by FAAH inhibition.


Asunto(s)
Acetamidas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Carbamatos/farmacología , Discriminación en Psicología/efectos de los fármacos , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Ciclohexanoles/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo
20.
Behav Neurosci ; 130(2): 261-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974857

RESUMEN

Anticipatory nausea (AN) is a conditioned nausea reaction experienced by chemotherapy patients upon returning to the clinic. Currently, there are no specific treatments for this phenomenon, with the classic antiemetic treatments (e.g., ondansetron) providing no relief. The rat model of AN, contextually elicited conditioned gaping reactions in rats, provides a tool for assessing potential treatments for this difficult to treat disorder. Systemically administered drugs which elevate the endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), by interfering with their respective degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) interfere with AN in the rat model. We have shown that MAGL inhibition within the visceral insular cortex (VIC) interferes with acute nausea in the gaping model (Sticht et al., 2015). Here we report that bilateral infusion of the MAGL inhibitor, MJN110 (but neither the FAAH inhibitor, PF3845, nor ondansetron) into the VIC suppressed contextually elicited conditioned gaping, and this effect was reversed by coadministration of the CB1 antagonist, AM251. These findings suggest that 2-AG within the VIC plays a critical role in the regulation of both acute nausea and AN. Because there are currently no specific therapeutics for chemotherapy patients that develop anticipatory nausea, MAGL inhibition by MJN110 may be a candidate treatment. (PsycINFO Database Record


Asunto(s)
Ácidos Araquidónicos/metabolismo , Corteza Cerebral/efectos de los fármacos , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Monoacilglicerol Lipasas/efectos de los fármacos , Amidohidrolasas , Animales , Ácidos Araquidónicos/uso terapéutico , Endocannabinoides/uso terapéutico , Glicéridos/uso terapéutico , Cloruro de Litio/farmacología , Modelos Animales , Monoacilglicerol Lipasas/metabolismo , Náusea , Alcamidas Poliinsaturadas , Ratas , Ratas Sprague-Dawley , Serotonina , Vómito Precoz/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA