Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(6): 3283-3288, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36745770

RESUMEN

cis-Stilbene (cis-St) is a well-known benchmark system for cis-trans photoisomerization. cis-St also produces 4a,4b-dihydrophenanthrene (DHP) in solution with a quantum yield of less than 0.19. The ring closure reaction, however, has never been identified for gaseous cis-St, and a recent computational simulation predicted the quantum yield of DHP to be only 0.04. In the present study, we identified an ultrafast ring closure reaction of gaseous cis-St for the first time using extreme ultraviolet time-resolved photoelectron spectroscopy. Surface hopping trajectory calculations at the SA3-XMS-CASPT2(2,2) level of theory reproduce the features of the observed time-resolved photoelectron spectra and predict the cis-St:DHP:trans-St branching ratio to be 0.55:0.41:0.04, in contrast with previous estimates. The results indicate that photoexcited cis-St favors ring closure over cis-trans isomerization under the isolated condition.

2.
J Am Chem Soc ; 143(21): 8034-8045, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34027664

RESUMEN

The photoinduced ring-opening reaction of 1,3-cyclohexadiene (CHD) to produce 1,3,5-hexatriene (HT) plays an essential role in the photobiological synthesis of vitamin D3 in the skin. This reaction follows the Woodward-Hoffmann rule, and C5-C6 bond rupture via an electronically excited state occurs with conrotatory motion of the end CH2 groups. However, it is noted that the photoexcited S1(π,π*) state of CHD is not electronically correlated with the ground state of HT, and the reaction must proceed via nonadiabatic transitions. In the present study, we have clearly observed the nonadiabatic reaction pathway via the doubly excited state of CHD using ultrafast extreme UV photoelectron spectroscopy. The results indicate that the reaction occurs in only 68 fs and creates product vibrational coherence. Extensive computational simulations support the interpretation of experimental results and provide further insights into the electronic dynamics in this paradigmatic electrocyclic ring-opening reaction.

3.
Faraday Discuss ; 228(0): 312-328, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33565544

RESUMEN

We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.


Asunto(s)
Hemo , Ligandos , Fotólisis , Análisis Espectral , Rayos X
4.
Nat Commun ; 11(1): 4145, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811825

RESUMEN

In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kß X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process.


Asunto(s)
Hemo/química , Hemoglobinas/química , Mioglobina/química , Hemo/metabolismo , Hemoglobinas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mioglobina/metabolismo , Espectrometría por Rayos X
5.
J Chem Phys ; 152(14): 144503, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295374

RESUMEN

Photoelectron spectroscopy of a liquid microjet requires careful energy calibration against electrokinetic charging of the microjet. For minimizing the error from this calibration procedure, Kurahashi et al. previously suggested optimization of an electrolyte concentration in aqueous solutions [Kurahashi et al., J. Chem. Phys. 140, 174506 (2014)]. More recently, Olivieri et al. proposed an alternative method of applying a variable external voltage on the liquid microjet [Olivieri et al., Phys. Chem. Chem. Phys. 18, 29506 (2016)]. In this study, we examined these two methods of calibration using extreme ultraviolet photoelectron spectroscopy with a magnetic bottle time-of-flight photoelectron spectrometer. We confirmed that the latter method flattens the vacuum level potential around the microjet, similar to the former method, while we found that the applied voltage energy-shifts the entire spectrum. Thus, careful energy recalibration is indispensable after the application of an external voltage for accurate measurements. It is also pointed out that electric conductivity of liquid on the order of 1 mS/cm is required for stable application of an external voltage. Therefore, both methods need a similar concentration of an electrolyte. Using the calibration method proposed by Olivieri et al., Perry et al. have recently revised the vertical ionization energy of liquid water to be 11.67(15) eV [Perry et al., J. Phys. Chem. Lett. 11, 1789 (2020)], which is 0.4 eV higher than the previously estimated value. While the source of this discrepancy is still unclear, we estimate that their calibration method possibly leaves uncertainty on the order of 0.1 eV.

6.
Sci Adv ; 5(8): eaaw6896, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31497644

RESUMEN

The electronic energy and dynamics of solvated electrons, the simplest yet elusive chemical species, is of interest in chemistry, physics, and biology. Here, we present the electron binding energy distributions of solvated electrons in liquid water, methanol, and ethanol accurately measured using extreme ultraviolet (EUV) photoelectron spectroscopy of liquids with a single-order high harmonic. The distributions are Gaussian in all cases. Using the EUV and UV photoelectron spectra of solvated electrons, we succeeded in retrieving sharp electron kinetic energy distributions from the spectra broadened and energy shifted by inelastic scattering in liquids, overcoming an obstacle in ultrafast UV photoelectron spectroscopy of liquids. The method is demonstrated for the benchmark systems of charge transfer to solvent reaction and ultrafast internal conversion of hydrated electron from the first excited state.

7.
Struct Dyn ; 4(4): 044033, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28713842

RESUMEN

The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300-400 fs, which we assign to the structural distortion dynamics near the surface.

8.
Struct Dyn ; 4(4): 044014, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28405592

RESUMEN

Angle-resolved photoemission spectroscopy of liquid water was performed using extreme ultraviolet radiation at 29.5 eV and a time-of-flight photoelectron spectrometer. SiC/Mg coated mirrors were employed to select the single-order 19th harmonic from laser high harmonics, which provided a constant photon flux for different laser polarizations. The instrument was tested by measuring photoemission anisotropy for rare gases and water molecules and applied to a microjet of an aqueous NaI solution. The solute concentration was adjusted to eliminate an electric field gradient around the microjet. The observed photoelectron spectra were analyzed considering contributions from liquid water, water vapor, and an isotropic background. The anisotropy parameters of the valence bands (1b1, 3a1, and 1b2) of liquid water are considerably smaller than those of gaseous water, which is primarily attributed to electron scattering in liquid water.

9.
J Phys Condens Matter ; 28(1): 016004, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26657491

RESUMEN

We examined the photoluminescence (PL) in single-crystal MnO(111) and observed a new strong emission band with a high-energy-side edge of 1.905 eV below 20 K. The emission bands with high-energy-side edges of 1.875 eV and 1.815 eV were also observed between 20 K and 30 K, and above 40 K, respectively. The temperature dependence of the intensity of each PL band showed step-like decreases at different critical temperatures, which suggests that the emission spectrum consist of contributions from three independent excited states. The fine structures of emission sidebands in the PL spectrum were interpreted in terms of phonons and magnons coupled with three types of self-trapped exciton (STE) states. Based on the Stokes shifts observed in our experiments and the thermal activation energies estimated from the temperature dependence of the PL intensity, we propose a configuration coordinate diagram for STE states and explain the mechanism of radiative and nonradiative relaxations in the magnetic-excitation-assisted PL process from the three types of STE states.

10.
J Org Chem ; 67(13): 4407-13, 2002 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-12076135

RESUMEN

An efficient method for generation of alpha-lambda3-iodanyl ketones from (Z)-(2-acetoxyvinyl)(phenyl)-lambda3-iodanes was developed. The method involves ester exchange of (Z)-2-acetoxyvinyl-lambda3-iodanes with methanol in the presence of triethylamine. alpha-lambda3-Iodanyl ketones react with a variety of nucleophiles such as halides, thiols, phosphines, phosphinic acids, and phosphates, under the conditions which produce alpha-functionalized carbonyl compounds probably via an S(N)2 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA