Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1203-C1211, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581656

RESUMEN

Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.


Asunto(s)
Angiotensina II , Enfermedades Cardiovasculares , Humanos , Dipeptidil Peptidasa 4 , Peptidil-Dipeptidasa A , Receptor de Angiotensina Tipo 1 , Inflamación , Fibrosis , Angiotensina I
2.
Cell Rep ; 42(2): 112105, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36807138

RESUMEN

Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.


Asunto(s)
Dipeptidil Peptidasa 4 , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Dipeptidil Peptidasa 4/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Células Madre/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(1): 92-108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412197

RESUMEN

BACKGROUND: Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-ß1 signaling. TGF-ß1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-ß1. METHODS: A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (µm) and area (µm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution. RESULTS: After femoral artery ligation, TGF-ß1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-ß1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-ß1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-ß1 oscillations helped in the recovery of limb repair and function. CONCLUSIONS: HSPC-SHP-1-mediated regulation of TGF-ß1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.


Asunto(s)
Células Madre Hematopoyéticas , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Isquemia , Extremidad Inferior
4.
Biophys Rev (Melville) ; 4(3): 031302, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38510705

RESUMEN

The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substantial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient conditions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission. In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symptoms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data analytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and medical interventions.

5.
ACS Sens ; 6(6): 2181-2190, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038108

RESUMEN

Electrolytes play a pivotal role in regulating cardiovascular functions, hydration, and muscle activation. The current standards for monitoring electrolytes involve periodic sampling of blood and measurements using laboratory techniques, which are often uncomfortable/inconvenient to the subjects and add considerable expense to the management of their underlying disease conditions. The wide range of electrolytes in skin interstitial fluids (ISFs) and their correlations with those in plasma create exciting opportunities for applications such as electrolyte and circadian metabolism monitoring. However, it has been challenging to monitor these electrolytes in the skin ISFs. In this study, we report a minimally invasive microneedle-based potentiometric sensing system for multiplexed and continuous monitoring of Na+ and K+ in the skin ISFs. The potentiometric sensing system consists of a miniaturized stainless-steel hollow microneedle to prevent sensor delamination and a set of modified microneedle electrodes for multiplex monitoring. We demonstrate the measurement of Na+ and K+ in artificial ISFs with a fast response time, excellent reversibility and repeatability, adequate selectivity, and negligible potential interferences upon the addition of a physiologically relevant concentration of metabolites, dietary biomarkers, and nutrients. In addition, the sensor maintains the sensitivity after multiple insertions into the chicken skin model. Furthermore, the measurements in artificial ISFs using calibrated sensors confirm the accurate measurements of physiological electrolytes in artificial ISFs. Finally, the skin-mimicking phantom gel and chicken skin model experiments demonstrate the sensor's potential for minimally invasive monitoring of electrolytes in skin ISFs. The developed sensor platform can be adapted for a wide range of other applications, including real-time monitoring of nutrients, metabolites, and proteins.


Asunto(s)
Técnicas Biosensibles , Líquido Extracelular , Electrólitos , Agujas , Potenciometría
6.
Am J Physiol Renal Physiol ; 320(3): F505-F517, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522410

RESUMEN

Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Macrófagos/metabolismo , Angiotensina II/farmacología , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Riñón/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratones
7.
J Clin Invest ; 130(12): 6523-6538, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897877

RESUMEN

Chronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2's role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedades Renales/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/virología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
8.
Hypertension ; 73(4): 849-858, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30827147

RESUMEN

Obesity is characterized by enhanced MR (mineralocorticoid receptor) activation, vascular stiffness, and associated cardiovascular and kidney disease. Consumption of a Western-style diet (WD), high in saturated fat and refined carbohydrates, by female mice, leads to obesity and vascular stiffening. Use of ECMR (endothelial cell-specific MR) knockout mice supports that ECMR activation is critical for development of vascular and cardiac fibrosis and stiffening. However, the role of ECMR activation in kidney inflammation and fibrosis remains unknown. We hypothesized that cell-specific deletion of ECMR would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Four-week-old female ECMR KO and wild-type mice were fed either mouse chow or WD for 16 weeks. WD feeding increased body weight and fat mass, proteinuria, as well as vascular stiffness indices (pulse wave velocity and kidney artery stiffening) and impaired endothelial-dependent vasodilatation without blood pressure changes. The WD-induced kidney arterial stiffening was associated with attenuated eNOS (endothelial NO synthase) activation, increased oxidative stress, proinflammatory immune responses, alterations in extracellular matrix degradation pathways, and fibrosis. ECMR deletion prevented these abnormalities by improving eNOS activation and reducing macrophage proinflammatory M1 polarization, expression of TG2 (transglutaminase 2), and MMP (matrix metalloproteinase)-9. Our data support the concept that ECMR activation contributes to endothelial dysfunction, increased kidney artery fibrosis/stiffening, and impaired NOS (NO synthase) activation, processes associated with macrophage infiltration and polarization, inflammation, and oxidative stress, collectively resulting in tubulointerstitial fibrosis in females consuming a WD.


Asunto(s)
Endotelio Vascular/metabolismo , Enfermedades Renales/patología , Obesidad/fisiopatología , Receptores de Mineralocorticoides/metabolismo , Arteria Renal/patología , Rigidez Vascular/fisiología , Vasodilatación/fisiología , Animales , Dieta Occidental/efectos adversos , Endotelio Vascular/fisiopatología , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Obesidad/metabolismo , Estrés Oxidativo , Arteria Renal/metabolismo , Arteria Renal/fisiopatología
9.
Cardiovasc Diabetol ; 18(1): 40, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909895

RESUMEN

OBJECTIVE: Diabetic nephropathy (DN) is characterized by glomerular and tubulointerstitial injury, proteinuria and remodeling. Here we examined whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses renal injury in a pre-clinical model of early DN more effectively than valsartan monotherapy. METHODS: Sixty-four male Zucker Obese rats (ZO) at 16 weeks of age were distributed into 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val) (68 mg kg-1 day-1; ZOSV); and Group 3: valsartan (val) (31 mg kg-1 day-1; ZOV). Group 4 received hydralazine, an anti-hypertensive drug (30 mg kg-1 day-1, ZOH). Six Zucker Lean (ZL) rats received saline (Group 5) and served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS: Mean arterial pressure (MAP) increased in ZOC (+ 28%), but not in ZOSV (- 4.2%), ZOV (- 3.9%) or ZOH (- 3.7%), during the 10 week-study period. ZOC were mildly hyperglycemic, hyperinsulinemic and hypercholesterolemic. ZOC exhibited proteinuria, hyperfiltration, elevated renal resistivity index (RRI), glomerular mesangial expansion and podocyte foot process flattening and effacement, reduced nephrin and podocin expression, tubulointerstitial and periarterial fibrosis, increased NOX2, NOX4 and AT1R expression, glomerular and tubular nitroso-oxidative stress, with associated increases in urinary markers of tubular injury. None of the drugs reduced fasting glucose or HbA1c. Hypercholesterolemia was reduced in ZOSV (- 43%) and ZOV (- 34%) (p < 0.05), but not in ZOH (- 13%) (ZOSV > ZOV > ZOH). Proteinuria was ameliorated in ZOSV (- 47%; p < 0.05) and ZOV (- 30%; p > 0.05), but was exacerbated in ZOH (+ 28%; p > 0.05) (ZOSV > ZOV > ZOH). Compared to ZOC, hyperfiltration was improved in ZOSV (p < 0.05 vs ZOC), but not in ZOV or ZOH. None of the drugs improved RRI. Mesangial expansion was reduced by all 3 treatments (ZOV > ZOSV > ZOH). Importantly, sac/val was more effective in improving podocyte and tubular mitochondrial ultrastructure than val or hydralazine (ZOSV > ZOV > ZOH) and this was associated with increases in nephrin and podocin gene expression in ZOSV (p < 0.05), but not ZOV or ZOH. Periarterial and tubulointerstitial fibrosis and nitroso-oxidative stress were reduced in all 3 treatment groups to a similar extent. Of the eight urinary proximal tubule cell injury markers examined, five were elevated in ZOC (p < 0.05). Clusterin and KIM-1 were reduced in ZOSV (p < 0.05), clusterin alone was reduced in ZOV and no markers were reduced in ZOH (ZOSV > ZOV > ZOH). CONCLUSIONS: Compared to val monotherapy, sac/val was more effective in reducing proteinuria, renal ultrastructure and tubular injury in a clinically relevant animal model of early DN. More importantly, these renoprotective effects were independent of improvements in blood pressure, glycemia and nitroso-oxidative stress. These novel findings warrant future clinical investigations designed to test whether sac/val may offer renoprotection in the setting of DN.


Asunto(s)
Aminobutiratos/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Nefropatías Diabéticas/prevención & control , Glomérulos Renales/efectos de los fármacos , Túbulos Renales/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Tetrazoles/farmacología , Animales , Presión Arterial/efectos de los fármacos , Biomarcadores/metabolismo , Compuestos de Bifenilo , Glucemia/metabolismo , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Combinación de Medicamentos , Fibrosis , Glomérulos Renales/metabolismo , Glomérulos Renales/fisiopatología , Glomérulos Renales/ultraestructura , Túbulos Renales/metabolismo , Túbulos Renales/fisiopatología , Túbulos Renales/ultraestructura , Lípidos/sangre , Masculino , Neprilisina/antagonistas & inhibidores , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteinuria/fisiopatología , Proteinuria/prevención & control , Ratas Zucker , Factores de Tiempo , Valsartán
10.
Cardiovasc Diabetol ; 17(1): 108, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30060748

RESUMEN

BACKGROUND: Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db). MATERIALS/METHODS: Ten-week-old female wild-type control (C57BLKS/J) and db/db (BKS.Cg-Dock7m+/+Leprdb/J) mice were divided into three groups: lean untreated controls (CkC, n = 17), untreated db/db (DbC, n = 19) and EMPA-treated db/db mice (DbE, n = 19). EMPA was mixed with normal mouse chow at a concentration to deliver 10 mg kg-1 day-1, and fed for 5 weeks, initiated at 11 weeks of age. RESULTS: Compared to CkC, DbC showed increased glucose levels, blood pressure, aortic and endothelial cell stiffness, and impaired endothelium-dependent vasorelaxation. Furthermore, DbC exhibited impaired activation of endothelial nitric oxide synthase, increased renal resistivity and pulsatility indexes, enhanced renal expression of advanced glycation end products, and periarterial and tubulointerstitial fibrosis. EMPA promoted glycosuria and blunted these vascular and renal impairments, without affecting increases in blood pressure. In addition, expression of "reversion inducing cysteine rich protein with Kazal motifs" (RECK), an anti-fibrotic mediator, was significantly suppressed in DbC kidneys and partially restored by EMPA. Confirming the in vivo data, EMPA reversed high glucose-induced RECK suppression in human proximal tubule cells. CONCLUSIONS: Empagliflozin ameliorates kidney injury in type 2 diabetic female mice by promoting glycosuria, and possibly by reducing systemic and renal artery stiffness, and reversing RECK suppression.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Angiopatías Diabéticas/prevención & control , Nefropatías Diabéticas/prevención & control , Glucósidos/farmacología , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Circulación Renal/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Rigidez Vascular/efectos de los fármacos , Albuminuria/etiología , Albuminuria/prevención & control , Animales , Glucemia/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Proteínas Ligadas a GPI/metabolismo , Glucosuria/etiología , Glucosuria/prevención & control , Humanos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Mutantes , Flujo Pulsátil/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
11.
Curr Hypertens Rep ; 20(8): 72, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29974262

RESUMEN

PURPOSE OF REVIEW: To update and review novel insights into the mechanisms, measurements, and therapeutic approaches to arterial stiffness. RECENT FINDINGS: Arterial (e.g., vascular) stiffness has been shown over time to prognosticate for cardiovascular and kidney outcomes. In this context, there has been increased interest behind the mechanisms that drive arterial stiffness beyond aging and interest in how to apply newer technologies in measurement of arterial stiffness. Pulse wave velocity has been the gold standard for measurement but industry has been innovating to improve measurement with use of single-point PWV as well as pharmacologic approaches with anti-hypertensives and oral hypoglycemic agents. Emerging data on the role of the mineralocorticoid receptor, the endothelial sodium channel (EnNaC), and uric acid in arterial stiffness are promising a number of potential therapies. Newer techniques of measuring PWV for arterial stiffness and novel therapies may soon lead to better outcomes from hypertension complications.


Asunto(s)
Antihipertensivos/farmacología , Hipertensión , Rigidez Vascular , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/terapia , Análisis de la Onda del Pulso/métodos , Terapias en Investigación , Ácido Úrico/metabolismo , Rigidez Vascular/efectos de los fármacos , Rigidez Vascular/fisiología
12.
Endocrinology ; 158(10): 3592-3604, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977602

RESUMEN

Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.


Asunto(s)
Adamantano/análogos & derivados , Aorta/efectos de los fármacos , Diástole/efectos de los fármacos , Dipéptidos/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Corazón/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Adamantano/farmacología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiotensina II/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Antígenos CD8/efectos de los fármacos , Antígenos CD8/metabolismo , Cardiomegalia/inducido químicamente , Dipeptidil Peptidasa 4/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Ecocardiografía , Fibrosis/inducido químicamente , Expresión Génica/efectos de los fármacos , Corazón/fisiopatología , Inflamación , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Proteínas Proto-Oncogénicas c-jun/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Vasoconstrictores/toxicidad
13.
Metabolism ; 74: 32-40, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28764846

RESUMEN

OBJECTIVE: Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. MATERIALS/METHODS: Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. RESULTS: XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. CONCLUSIONS: Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration.


Asunto(s)
Dieta Occidental , Inflamación/inducido químicamente , Proteinuria/inducido químicamente , Ácido Úrico/sangre , Rigidez Vascular/efectos de los fármacos , Alopurinol/administración & dosificación , Alopurinol/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Úrico/farmacología , Xantina Oxidasa/antagonistas & inhibidores
14.
Front Physiol ; 8: 456, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713285

RESUMEN

Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD), high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC) activity on endothelial cells (EnNaC). Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day) in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

15.
Can J Physiol Pharmacol ; 95(3): 281-287, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28177677

RESUMEN

Mammalian target for rapamycin complex 1 (mTORC1) is a common target for the action of immunosuppressant macrolide rapamycin and glucose-lowering metformin. Inhibition of mTORC1 can exert both beneficial and detrimental effects in different pathologies. Here, we investigated the differential effects of rapamycin (1.2 mg/kg per day delivered subcutaneously for 6 weeks) and metformin (300 mg/kg per day delivered orally for 11 weeks) treatments on male Zucker diabetic fatty (ZDF) rats that mimic the cardiorenal pathology of type 2 diabetic patients and progress to insulin insufficiency. Rapamycin and metformin improved proteinuria, and rapamycin also reduced urinary gamma glutamyl transferase (GGT) indicating improvement of tubular health. Metformin reduced food and water intake, and urinary sodium and potassium, whereas rapamycin increased urinary sodium. Metformin reduced plasma alkaline phosphatase, but induced transaminitis as evidenced by significant increases in plasma AST and ALT. Metformin also induced hyperinsulinemia, but did not suppress fasting plasma glucose after ZDF rats reached 17 weeks of age, and worsened lipid profile. Rapamycin also induced mild transaminitis. Additionally, both rapamycin and metformin increased plasma uric acid and creatinine, biomarkers for cardiovascular and renal disease. These observations define how rapamycin and metformin differentially modulate metabolic profiles that regulate cardiorenal pathology in conditions of severe type 2 diabetes.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Metformina/farmacología , Complejos Multiproteicos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Biomarcadores/sangre , Biomarcadores/orina , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/enzimología , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Proteinuria/enzimología , Proteinuria/etiología , Proteinuria/prevención & control , Ratas Zucker , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
16.
Am J Physiol Renal Physiol ; 312(4): F661-F670, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122713

RESUMEN

The protein dipeptidyl peptidase 4 (DPP4) is a target in diabetes management and reduction of associated cardiovascular risk. Inhibition of the enzymatic function and genetic deletion of DPP4 is associated with tremendous benefits to the heart, vasculature, adipose tissue, and the kidney in rodent models of obesity, diabetes and hypertension, and associated complications. The recently concluded, "Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53" trial revealed a reduction in proteinuria in chronic kidney disease patients (stages 1-3). These results have spurred immense interest in the nonenzymatic and enzymatic role of DPP4 in the kidney. DPP4 is expressed predominantly in the glomeruli and S1-S3 segments of the nephron and to a lesser extent in other segments. DPP4 is known to facilitate absorption of cleaved dipeptides and regulate the function of the sodium/hydrogen exchanger-3 in the proximal tubules. DPP4, also known as CD26, has an important role in costimulation of lymphocytes via caveolin-1 on antigen-presenting cells in peripheral blood. Herein, we present our perspectives for the ongoing interest in the role of DPP4 in the kidney.


Asunto(s)
Diabetes Mellitus/enzimología , Nefropatías Diabéticas/enzimología , Dipeptidil Peptidasa 4/metabolismo , Hipertensión/enzimología , Riñón/enzimología , Insuficiencia Renal Crónica/enzimología , Animales , Células Presentadoras de Antígenos/enzimología , Células Presentadoras de Antígenos/inmunología , Caveolina 1/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/inmunología , Diabetes Mellitus/fisiopatología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/inmunología , Nefropatías Diabéticas/fisiopatología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Progresión de la Enfermedad , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/inmunología , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Riñón/inmunología , Riñón/fisiopatología , Activación de Linfocitos , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo
17.
J Vis Exp ; (114)2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27583412

RESUMEN

Immune system activation occurs in multiple kidney diseases and pathophysiological processes. The immune system consists of both adaptive and innate components and multiple cell types. Sometimes, the cell type of interest is present in very low numbers among the large numbers of total cells isolated from the kidney. Hence, reliable and efficient isolation of kidney mononuclear cell populations is important in order to study the immunological problems associated with kidney diseases. Traditionally, tissue isolation of kidney mononuclear cells have been performed via enzymatic digestions using different varieties and strengths of collagenases/DNAses yielding varying numbers of viable immune cells. Recently, with the development of the mechanical tissue disruptors for single cell isolation, the collagenase digestion step is avoided and replaced by a simple mechanical disruption of the kidneys after extraction from the mouse. Herein, we demonstrate a simple yet efficient method for the isolation of kidney mononuclear cells for every day immune cell extractions. We further demonstrate an example of subset analysis of immune cells in the kidney. Importantly, this technique can be adapted to other soft and non-fibrous tissues such as the liver and brain.


Asunto(s)
Separación Celular/métodos , Sistema Inmunológico/citología , Riñón/citología , Riñón/inmunología , Macrófagos/citología , Subgrupos de Linfocitos T/citología , Animales , Biomarcadores , Centrifugación por Gradiente de Densidad , Citometría de Flujo , Inmunohistoquímica , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Subgrupos de Linfocitos T/inmunología
18.
Int J Mol Sci ; 17(5)2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27213360

RESUMEN

Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10(-8) M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression.


Asunto(s)
Angiotensina II/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Regulación de la Expresión Génica , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/biosíntesis , Sistema de Señalización de MAP Quinasas , Angiotensina II/farmacología , Animales , Línea Celular , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Insuficiencia Renal/etiología , Insuficiencia Renal/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 308(9): H1126-35, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25747754

RESUMEN

Overnutrition/obesity predisposes individuals, particularly women, to diastolic dysfunction (DD), an independent predictor of future cardiovascular disease. We examined whether low-dose spironolactone (Sp) prevents DD associated with consumption of a Western Diet (WD) high in fat, fructose, and sucrose. Female C57BL6J mice were fed a WD with or without Sp (1 mg·kg(-1)·day(-1)). After 4 mo on the WD, mice exhibited increased body weight and visceral fat, but similar blood pressures, compared with control diet-fed mice. Sp prevented the development of WD-induced DD, as indicated by decreased isovolumic relaxation time and an improvement in myocardial performance (

Asunto(s)
Diástole/efectos de los fármacos , Dieta Occidental , Ventrículos Cardíacos/efectos de los fármacos , Antagonistas de Receptores de Mineralocorticoides/administración & dosificación , Receptores de Mineralocorticoides/efectos de los fármacos , Espironolactona/administración & dosificación , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Dieta Alta en Grasa , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Femenino , Fibrosis , Fructosa , Ventrículos Cardíacos/inmunología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores de Mineralocorticoides/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Factores Sexuales , Factores de Tiempo , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/inmunología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Presión Ventricular/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
20.
Diabetes ; 64(6): 1988-2001, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25605806

RESUMEN

Novel therapies are needed for treating the increasing prevalence of hepatic steatosis in Western populations. In this regard, dipeptidyl peptidase-4 (DPP-4) inhibitors have recently been reported to attenuate the development of hepatic steatosis, but the potential mechanisms remain poorly defined. In the current study, 4-week-old C57Bl/6 mice were fed a high-fat/high-fructose Western diet (WD) or a WD containing the DPP-4 inhibitor, MK0626, for 16 weeks. The DPP-4 inhibitor prevented WD-induced hepatic steatosis and reduced hepatic insulin resistance by enhancing insulin suppression of hepatic glucose output. WD-induced accumulation of hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content was significantly attenuated with DPP-4 inhibitor treatment. In addition, MK0626 significantly reduced mitochondrial incomplete palmitate oxidation and increased indices of pyruvate dehydrogenase activity, TCA cycle flux, and hepatic TAG secretion. Furthermore, DPP-4 inhibition rescued WD-induced decreases in hepatic PGC-1α and CPT-1 mRNA expression and hepatic Sirt1 protein content. Moreover, plasma uric acid levels in mice fed the WD were decreased after MK0626 treatment. These studies suggest that DPP-4 inhibition ameliorates hepatic steatosis and insulin resistance by suppressing hepatic TAG and DAG accumulation through enhanced mitochondrial carbohydrate utilization and hepatic TAG secretion/export with a concomitant reduction of uric acid production.


Asunto(s)
Dieta Occidental/efectos adversos , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/metabolismo , Animales , Western Blotting , Composición Corporal/efectos de los fármacos , Ceramidas/sangre , Ratones , Ratones Endogámicos C57BL , Palmitatos/sangre , Ácido Pirúvico/sangre , Triazoles/uso terapéutico , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA