Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065497

RESUMEN

The effective management of water and nitrogen is crucial in the artificial cultivation of medicinal plants. Sophora alopecuroides, a perennial herbaceous plant in the Fabaceae family, is extensively used in medicine, with alkaloids as its primary bioactive constituents. Nevertheless, there remains a significant knowledge gap regarding how rhizospheric microbial communities respond to varying water and nitrogen conditions and their intricate relationships with soil environments and the growth of S. alopecuroides. In this study, two-year-old S. alopecuroides were used in a two-factor, three-level water-nitrogen interaction experiment. The irrigation levels included W1 (30-35% of maximum water holding capacity), W2 (50-55%), and W3 (70-75%), while nitrogen levels comprised N1 (32 mg/kg), N2 (64 mg/kg), and N3 (128 mg/kg). The study assessed plant growth indicators, total alkaloid content, and rhizospheric soil physicochemical parameters of S. alopecuroides. High-throughput sequencing (16S rRNA and ITS) was employed to analyze variations in rhizospheric microbial community composition and structure. The results showed that Proteobacteria and Ascomycota are the predominant bacterial and fungal phyla in the rhizosphere microbial community of S. alopecuroides. The highest biomass and alkaloid accumulation of S. alopecuroides were observed under the N1W3 treatment (50% nitrogen application and 70-75% of maximum water holding capacity). Specifically, six bacterial genus-level biomarkers (TRA3_20, MND1, env_OPS_17, SBR1031, Haliangium, S0134_terrestrial_group) and six fungal genus-level biomarkers (Pseudeurotium, Rhizophagus, Patinella, Pseudeurotium, Patinella, Rhizophagus) were identified under the N1W3 treatment condition. In the partial least squares path modeling (PLS-PM), water and nitrogen treatments demonstrated markedly positive direct effects on soil physicochemical parameters (p < 0.01), while showing significant negative direct impacts on alkaloid accumulation and plant growth indicators (p < 0.05). Soil physicochemical parameters, in turn, significantly negatively affected the rhizosphere fungal community (p < 0.05). Additionally, the rhizosphere fungal community exhibited highly significant negative direct effects on both the plant growth indicators and total alkaloid content of S. alopecuroides (p < 0.01). This study provides new insights into the interactions among rhizosphere soil environment, rhizosphere microbiota, plant growth, and alkaloid accumulation under water and nitrogen regulation, offering a scientific basis for the water and nitrogen management in the cultivation of S. alopecuroides.

2.
Plants (Basel) ; 13(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891233

RESUMEN

Sophora alopecuroides L., a perennial herb in the arid and semi-arid regions of northwest China, has the ecological functions of windbreaking and sand fixation and high medicinal value. In recent years, global warming and human activities have led to changes in suitable habitats for S. alopecuroides, which may affect the accumulation of natural products. In this study, MaxEnt 3.4 and ArcGIS 10.4 software were used to predict the distribution of potentially suitable habitats for S. alopecuroides in China under climate change. Furthermore, the geographical distribution of S. alopecuroides as affected by human activities, the differences in the content of natural products of S. alopecuroides between different suitable habitats, and the correlation between natural products and environmental factors were analyzed. The results showed that suitable habitats for S. alopecuroides were projected to expand in the future, and the major environmental factors were temperature (Bio1), rainfall (Bio18), and soil pH (pH). When Bio1, Bio18, and pH were 8.4283 °C, 7.1968 mm, and 9.9331, respectively, the distribution probability (P) of S. alopecuroides was the highest. After adding a human activity factor, the accuracy of the model prediction results was improved, and the area of suitable habitats was greatly reduced, showing a fragmented pattern. Meanwhile, habitat suitability had a specific effect on the content of natural products in S. alopecuroides. Specifically, the content of natural products in S. alopecuroides in wild habitats was higher than that in artificial cultivation, and highly suitable habitats showed higher contents than those in non-highly suitable habitats. The contents of total alkaloids and total flavonoids were positively correlated with human activities and negatively correlated with land use types. Among them, total alkaloids were negatively correlated with aspect, and total flavonoids were positively correlated with aspect. In addition, it is suggested that Xinjiang should be the priority planting area for S. alopecuroides in China, and priority should be given to protection measures in the Alashan area. Overall, this study provides an important foundation for the determination of priority planting areas and resource protection for S. alopecuroides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA