Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Med ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266747

RESUMEN

Human immunodeficiency virus type 1 (HIV-1)-specific broadly neutralizing monoclonal antibodies (bNAbs) have to date shown transient viral suppression when administered as monotherapy or as a cocktail of two antibodies1-4. A combination of three bNAbs provides improved neutralization coverage of global viruses, which may more potently suppress viral escape and rebound5-7. Here we performed an open-label, two-part study evaluating a single intravenous dose of HIV-1 bNAbs, PGT121, PGDM1400 and VRC07-523LS, in six adults without HIV in part 1 and a multicenter trial of up to six monthly infusions of these three bNAbs in 12 people living with HIV with an antiretroviral therapy (ART) interruption in part 2. The primary endpoints were safety, tolerability and pharmacokinetics, and the secondary endpoints in part 2 were antiviral activity following ART discontinuation, changes in CD4+ T cell counts and development of HIV-1 sequence mutations associated with bNAb resistance. The trial met its prespecified endpoints. The bNAb treatment was generally safe and well tolerated. In part 2, 83% of participants (10 of 12) maintained virologic suppression for the duration of antibody therapy for at least 28 weeks, and 42% of participants (5 of 12) showed virologic suppression for at least 38-44 weeks, despite the decline of serum bNAb concentrations to low or undetectable levels. In exploratory analyses, early viral rebound in two individuals correlated with baseline resistance to PGT121 and PGDM1400, whereas long-term virologic control in five individuals correlated with reduced immune activation, T cell exhaustion and proinflammatory signaling following bNAb therapy. Our data show the potential of a triple bNAb cocktail to suppress HIV-1 in the absence of ART. ClinicalTrials.gov registration: NCT03721510 .

2.
NPJ Vaccines ; 9(1): 89, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782902

RESUMEN

Mosaic HIV-1 vaccines have been shown to elicit robust humoral and cellular immune responses in people living with HIV-1 (PLWH), that had started antiretroviral therapy (ART) during acute infection. We evaluated the safety and immunogenicity of 2 mosaic vaccine regimens in virologically suppressed individuals that had initiated ART during the chronic phase of infection, exemplifying the majority of PLWH. In this double-blind, placebo-controlled phase 1 trial (IPCAVD013/HTX1002) 25 ART-suppressed PLWH were randomized to receive Ad26.Mos4.HIV/MVA-Mosaic (Ad26/MVA) (n = 10) or Ad26.Mos4.HIV/Ad26.Mos4.HIV plus adjuvanted gp140 protein (Ad26/Ad26+gp140) (n = 9) or placebo (n = 6). Primary endpoints included safety and tolerability and secondary endpoints included HIV-specific binding and neutralizing antibody titers and HIV-specific T cell responses. Both vaccine regimens were well tolerated with pain/tenderness at the injection site and fatigue, myalgia/chills and headache as the most commonly reported solicited local and grade 3 systemic adverse events, respectively. In the Ad26/Ad26+gp140 group, Env-specific IFN-γ T cell responses showed a median 12-fold increase while responses to Gag and Pol increased 1.8 and 2.4-fold, respectively. The breadth of T cell responses to individual peptide subpools increased from 11.0 pre-vaccination to 26.0 in the Ad26/Ad26+gp140 group and from 10.0 to 14.5 in the Ad26/MVA group. Ad26/Ad26+gp140 vaccination increased binding antibody titers against vaccine-matched clade C Env 5.5-fold as well as augmented neutralizing antibody titers against Clade C pseudovirus by 7.2-fold. Both vaccine regimens were immunogenic, while the addition of the protein boost resulted in additional T cell and augmented binding and neutralizing antibody titers. These data suggest that the Ad26/Ad26+gp140 regimen should be tested further.

3.
J Infect Dis ; 230(3): e601-e604, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38566610

RESUMEN

Prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is typically measured by nucleocapsid serology assays. In this study, we show that the Simoa serology assay and T-cell intracellular cytokine staining assay are more sensitive than the clinical Elecsys assay for detection of nucleocapsid-specific immune responses. These data suggest that the prevalence of prior SARS-CoV-2 infection in the population may be higher than currently appreciated.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/epidemiología , SARS-CoV-2/inmunología , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Femenino , Masculino , Nucleocápside/inmunología , Adulto , Prueba Serológica para COVID-19/métodos , Sensibilidad y Especificidad , Anciano , Proteínas de la Nucleocápside de Coronavirus/inmunología , Linfocitos T/inmunología , Citocinas/sangre
4.
Lancet HIV ; 11(2): e117-e124, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141639

RESUMEN

An effective HIV-1 vaccine is a global health priority but has remained elusive for more than 40 years. Key scientific hurdles that have hampered vaccine development are the unprecedented genetic variability of the virus, the rapid establishment of persistent viral latency, and the challenges associated with induction of broadly neutralising antibodies. Clinical trials have been instrumental in evaluating scientific concepts and testing vaccine strategies. This Review discusses lessons learned from clinical trials of HIV-1 vaccines, current technologies that are being explored, and future considerations in the development of a safe and effective HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Seropositividad para VIH/tratamiento farmacológico , Proyectos de Investigación
5.
Nat Commun ; 14(1): 6703, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872311

RESUMEN

Thrombosis with thrombocytopenia syndrome (TTS) is a rare but potentially severe adverse event following immunization with adenovirus vector-based COVID-19 vaccines such as Ad26.COV2.S (Janssen) and ChAdOx1 (AstraZeneca). However, no case of TTS has been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States. Here we utilize transcriptomic and proteomic profiling to compare individuals who receive two doses of Ad26.COV2.S with those vaccinated with BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induces transient activation of platelet and coagulation and innate immune pathways that resolve by day 7; by contrast, patients with TTS show robust upregulation of these pathways on days 15-19 following initial Ad26.COV2.S vaccination. Meanwhile, a second immunization or a reduced initial dose of Ad26.COV2.S induces lower activation of these pathways than does the full initial dose. Our data suggest a role of coagulation and proinflammatory pathways in TTS pathogenesis, which may help optimize vaccination regimens to reduce TTS risk.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trombocitopenia , Trombosis , Humanos , Ad26COVS1 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Proteómica , Síndrome , Trombocitopenia/etiología , Trombosis/etiología , Vacunación/efectos adversos
6.
Sci Transl Med ; 14(665): eabo6160, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35857623

RESUMEN

Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Macaca , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación
7.
Nat Commun ; 13(1): 3463, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710819

RESUMEN

The latent viral reservoir is the critical barrier for developing an HIV-1 cure. Previous studies have shown that therapeutic vaccination or broadly neutralizing antibody (bNAb) administration, together with a Toll-like receptor 7 (TLR7) agonist, enhanced virologic control or delayed viral rebound, respectively, following discontinuation of antiretroviral therapy (ART) in SIV- or SHIV-infected rhesus macaques. Here we show that the combination of active and passive immunization with vesatolimod may lead to higher rates of post-ART virologic control compared to either approach alone. Therapeutic Ad26/MVA vaccination and PGT121 administration together with TLR7 stimulation with vesatolimod resulted in 70% post-ART virologic control in SHIV-SF162P3-infected rhesus macaques. These data suggest the potential of combining active and passive immunization targeting different immunologic mechanisms as an HIV-1 cure strategy.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Infecciones por VIH/tratamiento farmacológico , Inmunización Pasiva , Macaca mulatta , Receptor Toll-Like 7 , Carga Viral
8.
NPJ Vaccines ; 7(1): 53, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585080

RESUMEN

Developing an intervention that results in virologic control following discontinuation of antiretroviral therapy (ART) is a major objective of HIV-1 cure research. In this study, we investigated the therapeutic efficacy of a vaccine consisting of adenovirus serotype 26 (Ad26) and modified vaccinia Ankara (MVA) with or without an SIV Envelope (Env) gp140 protein with alum adjuvant in combination with the TLR7 agonist vesatolimod (GS-9620) in 36 ART-suppressed, SIVmac251-infected rhesus macaques. Ad26/MVA therapeutic vaccination led to robust humoral and cellular immune responses, and the Env protein boost increased antibody responses. Following discontinuation of ART, virologic control was observed in 5/12 animals in each vaccine group, compared with 0/12 animals in the sham control group. These data demonstrate therapeutic efficacy of Ad26/MVA vaccination with vesatolimod but no clear additional benefit of adding an Env protein boost. SIV-specific cellular immune responses correlated with virologic control. Our findings show partial efficacy of therapeutic vaccination following ART discontinuation in SIV-infected rhesus macaques.

9.
PLoS Pathog ; 18(4): e1010467, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35452496

RESUMEN

A key challenge for the development of a cure to HIV-1 infection is the persistent viral reservoir established during early infection. Previous studies using Toll-like receptor 7 (TLR7) agonists and broadly neutralizing antibodies (bNAbs) have shown delay or prevention of viral rebound following antiretroviral therapy (ART) discontinuation in simian-human immunodeficiency virus (SHIV)-infected rhesus macaques. In these prior studies, ART was initiated early during acute infection, which limited the size and diversity of the viral reservoir. Here we evaluated in SHIV-infected rhesus macaques that did not initiate ART until 1 year into chronic infection whether the TLR7 agonist vesatolimod in combination with the bNAb PGT121, formatted either as a human IgG1, an effector enhanced IgG1, or an anti-CD3 bispecific antibody, would delay or prevent viral rebound following ART discontinuation. We found that all 3 antibody formats in combination with vesatolimod were able to prevent viral rebound following ART discontinuation in a subset of animals. These data indicate that a TLR7 agonist combined with antibodies may be a promising strategy to achieve long-term ART-free HIV remission in humans.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/uso terapéutico , Inmunoglobulina G , Macaca mulatta , Receptor Toll-Like 7/agonistas , Carga Viral
10.
Nature ; 601(7894): 612-616, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875675

RESUMEN

Because no currently available vaccine can prevent HIV infection, pre-exposure prophylaxis (PrEP) with antiretrovirals (ARVs) is an important tool for combating the HIV pandemic1,2. Long-acting ARVs promise to build on the success of current PrEP strategies, which must be taken daily, by reducing the frequency of administration3. GS-CA1 is a small-molecule HIV capsid inhibitor with picomolar antiviral potency against a broad array of HIV strains, including variants resistant to existing ARVs, and has shown long-acting therapeutic potential in a mouse model of HIV infection4. Here we show that a single subcutaneous administration of GS-CA1 provides long-term protection against repeated rectal simian-human immunodeficiency virus (SHIV) challenges in rhesus macaques. Whereas all control animals became infected after 15 weekly challenges, a single 300 mg kg-1 dose of GS-CA1 provided per-exposure infection risk reduction of 97% for 24 weeks. Pharmacokinetic analysis showed a correlation between GS-CA1 plasma concentration and protection from SHIV challenges. GS-CA1 levels greater than twice the rhesus plasma protein-adjusted 95% effective concentration conferred 100% protection in this model. These proof-of-concept data support the development of capsid inhibitors as a novel long-acting PrEP strategy in humans.


Asunto(s)
Antirretrovirales , Proteínas de la Cápside , Cápside , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antirretrovirales/farmacología , Cápside/efectos de los fármacos , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos
11.
Nat Commun ; 12(1): 1474, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674572

RESUMEN

The establishment of a long-lived viral reservoir is the key obstacle for achieving an HIV-1 cure. However, the anatomic, virologic, and immunologic features of the viral reservoir in tissues during antiretroviral therapy (ART) remain poorly understood. Here we present a comprehensive necroscopic analysis of the SIV/SHIV viral reservoir in multiple lymphoid and non-lymphoid tissues from SIV/SHIV-infected rhesus macaques suppressed with ART for one year. Viral DNA is observed broadly in multiple tissues and is comparable in animals that had initiated ART at week 1 or week 52 of infection. In contrast, viral RNA is restricted primarily to lymph nodes. Ongoing viral RNA transcription is not the result of unsuppressed viral replication, as single-genome amplification and subsequent phylogenetic analysis do not show evidence of viral evolution. Gag-specific CD8+ T cell responses are predominantly observed in secondary lymphoid organs in animals chronically infected prior to ART and these responses are dominated by CD69+ populations. Overall, we observe that the viral reservoir in rhesus macaques is widely distributed across multiple tissue sites and that lymphoid tissues act as a site of persistent viral RNA transcription under conditions of long-term ART suppression.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/virología , Ganglios Linfáticos/virología , ARN Viral/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos T CD8-positivos , ADN Viral , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Ganglios Linfáticos/inmunología , Tejido Linfoide/virología , Macaca mulatta , Filogenia , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/genética , Carga Viral , Replicación Viral
12.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33727331

RESUMEN

Pseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background. Specifically, a SARS-CoV-2 spike variant with a cytoplasmic tail deletion of 13 amino acids, termed SΔCT13, conferred enhanced spike incorporation into pseudovirions and increased viral entry into cells as compared with full-length spike (S). We further compared S and SΔCT13 in terms of their sensitivity to vaccine sera, purified convalescent IgG, hACE2-mIgG, and the virus entry inhibitor BafA1. We developed a SΔCT13-based pseudovirus neutralization assay and defined key assay characteristics, including linearity, limit of detection, and intra- and intermediate-assay precision. Our data demonstrate that the SΔCT13-based pseudovirus shows enhanced infectivity in target cells, which will facilitate the assessment of humoral immunity to SARS-CoV-2 infection, antibody therapeutics, and vaccination. This pseudovirus neutralization assay can also be readily adapted to SARS-CoV-2 variants that emerge.IMPORTANCESARS-CoV-2 is the etiologic agent of the COVID-19 pandemic. The development of a high throughput pseudovirus neutralization assay is critical for the development of vaccines and immune-based therapeutics. In this study, we show that deletion of the cytoplasmic tail of the SARS-CoV-2 spike leads to pseudoviruses with enhanced infectivity. This SΔCT13-based pseudovirus neutralization assay should be broadly useful for the field.

13.
JAMA ; 325(15): 1535-1544, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33704352

RESUMEN

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines. Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses. Design, Setting, and Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S. Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group). Main Outcomes and Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses. Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced. Conclusion and Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine. Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Celular , Inmunogenicidad Vacunal , Adulto , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Inmunidad Humoral , Masculino , Persona de Mediana Edad , Potencia de la Vacuna , Adulto Joven
14.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33472939

RESUMEN

Respiratory virus challenge studies involve administration of the challenge virus and sampling to assess for protection from the same anatomical locations. It can therefore be difficult to differentiate actively replicating virus from input challenge virus. For SARS-CoV-2, specific monitoring of actively replicating virus is critical to investigate the protective and therapeutic efficacy of vaccines, monoclonal antibodies, and antiviral drugs. We developed a SARS-CoV-2 subgenomic RNA (sgRNA) RT-PCR assay to differentiate productive infection from inactivated or neutralized virus. Subgenomic RNAs are generated after cell entry and are poorly incorporate into mature virions, and thus may provide a marker for actively replicating virus. We show envelope (E) sgRNA was degraded by RNase in infected cell lysates, while genomic RNA (gRNA) was protected, presumably due to packaging into virions. To investigate the capacity of the sgRNA assay to distinguish input challenge virus from actively replicating virus in vivo, we compared the E sgRNA assay to a standard nucleoprotein (N) or E total RNA assay in convalescent rhesus macaques and in antibody-treated rhesus macaques after experimental SARS-CoV-2 challenge. In both studies, the E sgRNA assay was negative, suggesting protective efficacy, whereas the N and E total RNA assays remained positive. These data suggest the potential utility of sgRNA to monitor actively replicating virus in prophylactic and therapeutic SARS-CoV-2 studies.ImportanceDeveloping therapeutic and prophylactic countermeasures for the SARS-CoV-2 virus is a public health priority. During challenge studies, respiratory viruses are delivered and sampled from the same anatomical location. It is therefore important to distinguish actively replicating virus from input challenge virus. The most common assay for detecting SARS-CoV-2 virus, reverse transcription polymerase chain reaction (RT-PCR) targeting nucleocapsid total RNA, cannot distinguish neutralized input virus from replicating virus. In this study, we assess SARS-CoV-2 subgenomic RNA as a potential measure of replicating virus in rhesus macaques.

16.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007262

RESUMEN

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Asunto(s)
Inmunización Pasiva/métodos , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Productos del Gen env/inmunología , Productos del Gen gag/inmunología , Productos del Gen pol/inmunología , VIH-1/inmunología , Inmunoglobulina G/inmunología , Macaca mulatta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología
17.
Nature ; 586(7830): 583-588, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32731257

RESUMEN

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Macaca mulatta , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , COVID-19 , Vacunas contra la COVID-19 , Modelos Animales de Enfermedad , Femenino , Inmunidad Celular , Inmunidad Humoral , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , SARS-CoV-2 , Vacunación , Carga Viral
18.
Lancet Infect Dis ; 20(9): 1061-1070, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32618279

RESUMEN

BACKGROUND: The development of an effective vaccine against Zika virus remains a public health priority. A Zika purified inactivated virus (ZPIV) vaccine candidate has been shown to protect animals against Zika virus challenge and to be well tolerated and immunogenic in humans up to 8 weeks of follow-up. We aimed to assess the safety and immunogenicity of ZPIV in humans up to 52 weeks of follow-up when given via standard or accelerated vaccination schedules. METHODS: We did a single-centre, double-blind, randomised controlled, phase 1 trial in healthy adults aged 18-50 years with no known history of flavivirus vaccination or infection at Beth Israel Deaconess Medical Center in Boston, MA, USA. Participants were sequentially enrolled into one of three groups: ZPIV given at weeks 0 and 4 (standard regimen), weeks 0 and 2 (accelerated regimen), or week 0 alone (single-dose regimen). Within each group, participants were randomly assigned using a computer-generated randomisation schedule to receive an intramuscular injection of 5 µg ZPIV or saline placebo, in a ratio of 5:1. The sponsor, clinical staff, investigators, participants, and laboratory personnel were masked to treatment assignment. The primary endpoint was safety up to day 364 after final dose administration, and secondary endpoints were proportion of participants with positive humoral immune responses (50% microneutralisation titre [MN50] ≥100) and geometric mean MN50 at observed peak response (ie, the highest neutralising antibody level observed for an individual participant across all timepoints) and week 28. All participants who received at least one dose of ZPIV or placebo were included in the safety population; the analysis of immunogenicity at observed peak included all participants who received at least one dose of ZPIV or placebo and had any adverse events or immunogenicity data after dosing. The week 28 immunogenicity analysis population consisted of all participants who received ZPIV or placebo and had immunogenicity data available at week 28. This trial is registered with ClinicalTrials.gov, NCT02937233. FINDINGS: Between Dec 8, 2016, and May 17, 2017, 12 participants were enrolled into each group and then randomly assigned to vaccine (n=10) or placebo (n=2). There were no serious or grade 3 treatment-related adverse events. The most common reactions among the 30 participants who received the vaccine were injection-site pain (24 [80%]), fatigue (16 [53%]), and headache (14 [46%]). A positive response at observed peak titre was detected in all participants who received ZPIV via the standard regimen, in eight (80%) of ten participants who received ZPIV via the accelerated regimen, and in none of the ten participants who received ZPIV via the single-dose regimen. The geometric mean of all individual participants' observed peak values was 1153·9 (95% CI 455·2-2925·2) in the standard regimen group, 517·7 (142·9-1875·6) in the accelerated regimen group, and 6·3 (3·7-10·8) in the single-dose regimen group. At week 28, a positive response was observed in one (13%) of eight participants who received ZPIV via the standard regimen and in no participant who received ZPIV via the accelerated (n=7) or single-dose (n=10) regimens. The geomteric mean titre (GMT) at this timepoint was 13·9 (95% CI 3·5-55·1) in the standard regimen group and 6·9 (4·0-11·9) in the accelerated regimen group; antibody titres were undetectable at 28 weeks in participants who received ZPIV via the single-dose regimen. For all vaccine schedules, GMTs peaked 2 weeks after the final vaccination and declined to less than 100 by study week 16. There was no difference in observed peak GMTs between the standard 4-week and the accelerated 2-week boosting regimens (p=0·4494). INTERPRETATION: ZPIV was safe and well tolerated in humans up to 52 weeks of follow-up. ZPIV immunogenicity required two doses and was not durable. Additional studies of ZPIV to optimise dosing schedules are ongoing. FUNDING: The Henry M Jackson Foundation for the Advancement of Military Medicine.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Adolescente , Adulto , Femenino , Humanos , Esquemas de Inmunización , Masculino , Persona de Mediana Edad , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto Joven
19.
Nature ; 584(7821): 443-449, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32668443

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Betacoronavirus/química , Unión Competitiva , COVID-19 , Línea Celular , Reacciones Cruzadas , Modelos Animales de Enfermedad , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Persona de Mediana Edad , Pruebas de Neutralización , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Profilaxis Pre-Exposición , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
20.
Science ; 369(6505): 806-811, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32434945

RESUMEN

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers at levels comparable to those found in convalescent humans and macaques infected with SARS-CoV-2. After vaccination, all animals were challenged with SARS-CoV-2, and the vaccine encoding the full-length S protein resulted in >3.1 and >3.7 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, as compared with viral loads in sham controls. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate vaccine protection against SARS-CoV-2 in nonhuman primates.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Betacoronavirus/fisiología , Líquido del Lavado Bronquioalveolar/virología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunización Secundaria , Inmunogenicidad Vacunal , Memoria Inmunológica , Macaca mulatta , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/inmunología , Mucosa Nasal/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Dominios Proteicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas de ADN/administración & dosificación , Carga Viral , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA