Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Environ Manage ; 356: 120734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520861

RESUMEN

This study investigates the genetic responses of the fungus Trichoderma asperellum (T. asperellum) during bioleaching of ore and tailing samples, comparing one-step, two-step, and spent media bioleaching processes. HPLC analysis quantified oxalic acid, citric acid, and propionic acids, with oxalic acid identified as the primary organic acid involved in metal bioleaching. Metal analysis revealed differences in recovery between ore and tailing samples and among bioleaching processes. The two-step bioleaching process yielded the highest zinc (>54%) and nickel (>60%) recovery in tailings and ore, respectively. Nickel's efficient recovery in ore bioleaching was attributed to the presence of manganese, while its precipitation as nickel oxalate in tailings hindered recovery. Additional metals such as Co, Mn, Mg, Cu, and As were also successfully recovered. Transcriptomic analyses showed significant upregulation of genes associated with biological processes and cellular components, particularly those related to cell membrane structure and function, indicating T. asperellum's adaptation to environmental stresses during metal bioleaching. These findings enhance our understanding of the diverse mechanisms influencing metal recovery rates in bioleaching processes.


Asunto(s)
Hypocreales , Metales , Níquel , Metales/análisis , Perfilación de la Expresión Génica , Oxalatos
2.
Sci Rep ; 14(1): 3866, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365802

RESUMEN

Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.


Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Niger , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Microbiota/genética , Petróleo/metabolismo , Hidrocarburos/metabolismo , Suelo/química , ADN/metabolismo
3.
Sci Total Environ ; 915: 170010, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38219994

RESUMEN

Till present, natural wetlands have been continuously subjected to intensive pollution stress in recent years, mainly because of the rapidly growing industrialization and urbanization that are associated with a myriad of anthropogenic activities and land use practices. These man-made sources of pollution change the chemical properties of the natural wetlands, which in turn alter their microbial ecological biodiversity and functions. For the first time, the impact of the current anthropogenic activities and land use practices on the Blesbokspruit wetland chemical status and their consequential effect on the microbial structure and functions were investigated. Sites of high pollution intensity were identified using geographic information systems mapping (GISMapping) and the wetland microbiome and functional profile were studied through the use of high throughput shotgun metagenomics sequencing analysis. The predominant phyla that stemmed along the Blesbokspruit wetland were found to be Proteobacteria which was more dominant in water (93 %) than in the sediments (89 %), followed by firmicutes which was more abundant in sediments (9 %) than in water (6 %), and Bacteroidetes were relatively low in abundance within both the sediments (2 %) and the overlying water (1 %). The genera Klebsiella (70.4 %-28.2 %), Citrobacter (52.0 %-30.6 %), Escherichia (51.0 %-8.4 %), and Lynsinibacillus (9.3 %-1.5 %) were observed in most water and sediment samples. Within the six polluted sites, Site 2 was found to be the most highly polluted site in the Blesbokspruit wetland with very high COD (900 mg/L), TOC (11.60 mg/L), NO3- (39.74 mg/L), NO2- (12.64 mg/L), PO43 (4.14 mg/L), Fl- (143.88 mg/L), Cl- (145.95 mg/L) concentrations recorded in the water and high levels of TOC (0.37 mg/L), TC (6.92 %), TN (1.82 %), TS (0.53 %) in sediments. The microbial community structure and functions were found to be strongly influenced by the high organic content from the intense agricultural activities and sewage spillages and heavy metals from the mining activities nearby.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes Químicos del Agua , Humanos , Humedales , Efectos Antropogénicos , Metales Pesados/análisis , Agua/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
4.
J Contam Hydrol ; 253: 104101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379730

RESUMEN

Blesbokspruit wetland is one of the least conserved ecosystems in the Southern Africa region with active and latent threats of anthropogenic contamination stretching over decades of mining wastewater discharge, agricultural run-off, and a consistent influx of untreated sewage. This study provides an insight into the present-day spatial distribution of heavy metal contamination and the role of localised macrophytes in their phytoremediation. With exception of the first sampling point, the concentration of heavy metals in water samples throughout the wetland was within limits however findings from sediment samples were the inverse. The concentrations of Chromium and Nickel significantly exceeded both effect range low (ERL) and effect range medium (ERM) limits (250-430 mg/Kg and 73-151 mg/Kg respectively) as set out by international sediment quality guidelines. Emergent- Phragmites australis, Typha capensis, and free-flowing-Eichhornia crassipes macrophytes, which are naturally localised to the wetland were found to have varying bioaccumulation potential for different heavy metals; Bioconcentration of heavy metals in emergent macrophytes was relatively low especially for Nickel and Chromium compared to free-flowing macrophytes. E. crassipes accumulated significant amounts of the heavy metals with root concentrations of up to 17.23, 116.6, 330.5, and 342.9 mg/Kg for Arsenic, Lead, Nickel, and Chromium respectively. The emergent macrophytes were however found to bioconcentrate Arsenic up to 1.15 L/Kg (T. capensis) and 9.9 L/Kg (P. Australis) at sites 4 and 5 respectively.   Findings with regards to bioconcentration especially of the E. crassipes, validate recommendations for the utilization of hyperaccumulating macrophytes for the natural recovery of these heavy metals towards alleviating the anthropogenic stress on this valuable ecosystem.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes Químicos del Agua , Arsénico/análisis , Ecosistema , Humedales , Níquel , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Cromo , Biodegradación Ambiental
5.
J Fungi (Basel) ; 8(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628675

RESUMEN

The hostile environment of mine tailings contains unique microbial life capable of bioleaching. The metagenomic analysis of such an environment provides an in-depth understanding of the microbial life and its potential, especially in biomining operations. However, DNA recovery from samples collected in those environments is challenging due to the presence of metal ions that interfere with the DNA analysis. A varied concentration of EDTA (4-13 µg/µL) to chelate the metal ions of enriched tailing samples prior to DNA extraction was performed. The results show that 9 µg/µL of EDTA was effective in most samples. However, the increasing concentration of EDTA negatively affected the DNA recovery. The sequencing of the successfully extracted DNA revealed a diverse range of fungal genera, some of which have not been previously reported in tailing or bioleaching applications. The dominant genera include Fodinomyces, Penicillium, Recurvomuces, Trichoderma, and Xenoacremonium; their traits were determined using the FungalTraits database. This study demonstrates the need to include a preliminary metal-chelating step using EDTA before DNA extractions for samples collected from metal-rich environments. It further showed the need for optimization but provided a benchmark range, particularly for tailings. However, we caution that a further EDTA removal step from the extracted DNA should be included to avoid its interferences in downstream applications.

6.
Crit Rev Biotechnol ; 42(4): 487-507, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34315294

RESUMEN

Anaerobic digestion (AD) for biogas production is affected by many factors that includes organic loading rate (OLR). This OLR appears to be closely linked to various other factors and understanding these linkages would therefore allow the sole use of OLR for process performance monitoring, control, as well as reactor design. This review's objective is to collate the various AD factor specific studies, then relate these factors' role in OLR fluctuations. By further analyzing the influence of OLR on the AD performance, it would then be possible, once all the other factors have been determined and fixed, to manage an AD plant by monitoring and controlling OLR only. Decisions on reactor design, process kinetics, biogas yield and process stability can then be made much more quickly and with minimal troubleshooting steps.


Asunto(s)
Biocombustibles , Reactores Biológicos , Anaerobiosis , Metano
7.
Sci Rep ; 11(1): 19913, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620937

RESUMEN

An estimated 25 million tons of animal manure is produced globally every year, causing considerable impact to the environment. These impacts can be managed through the use of anaerobic digestion (AD) This process achieves waste degradation through enzymatic activity, the efficiency of the AD process is directly related to microorganisms that produce these enzymes. Biomethane potential (BMP) assays remain the standard theoretical framework to pre-determine biogas yield and have been used to determine the feasibility of substrates or their combination for biogas production. However, an integrated approach that combines substrate choice and co-digestion would provide an improvement to the current predictive models. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) addresses the limitations of assays in this regard. In this paper, the biochemical functions of horse, cow, and pig manures are predicted. A total of 135 predicted KEGG Orthologies (KOs) showed amino acids, carbohydrate, energy, lipid, and xenobiotic metabolisms in all the samples. Linear discriminant analysis (LDA) combined with the effect size measurements (LEfSe), showed that fructose, mannose, amino acid and nucleotide sugar, phosphotransferase (PST) as well as starch and sucrose metabolisms were significantly higher in horse manure samples. 36 of the KOs were related to the acidogenesis and/or acetogenesis AD stages. Extended bar plots showed that 11 significant predictions were observed for horse-cow, while 5 were predicted for horse-pig and for cow-pig manures. Based on these predictions, the AD process can be enhanced through co-digestion strategies that takes into account the predicted metabolic contributions of the manure samples. The results supported the BMP calculations for the samples in this study. Biogas yields can be improved if this combined approach is employed in routine analysis before co-digesting different substrates.


Asunto(s)
Anaerobiosis , Biocombustibles , Fermentación , Estiércol/microbiología , Metagenómica/métodos , ARN Ribosómico 16S , Alimentación Animal , Animales , Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Metagenoma , Metano/biosíntesis , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA