Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cells ; 12(16)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37626839

RESUMEN

The generation of mature and vascularized human pluripotent stem cell-derived cardiac organoids (hPSC-COs) is necessary to ensure the validity of drug screening and disease modeling. This study investigates the effects of cellular aggregate (CA) stemness and self-organization on the generation of mature and vascularized hPSC-COs and elucidates the mechanisms underlying cardiac organoid (CO) maturation and vascularization. COs derived from 2-day-old CAs with high stemness (H-COs) and COs derived from 5-day-old CAs with low stemness (L-COs) were generated in a self-organized microenvironment via Wnt signaling induction. This study finds that H-COs exhibit ventricular, structural, metabolic, and functional cardiomyocyte maturation and vessel networks consisting of endothelial cells, smooth muscle cells, pericytes, and basement membranes compared to L-COs. Transcriptional profiling shows the upregulation of genes associated with cardiac maturation and vessel formation in H-COs compared with the genes in L-COs. Through experiments with LIMK inhibitors, the activation of ROCK-LIMK-pCofilin via ECM-integrin interactions leads to cardiomyocyte maturation and vessel formation in H-COs. Furthermore, the LIMK/Cofilin signaling pathway induces TGFß/NODAL and PDGF pathway activation for the maturation and vascularization of H-COs. The study demonstrates for the first time that LIMK/Cofilin axis activation plays an important role in the generation of mature and vascularized COs.


Asunto(s)
Células Endoteliales , Organoides , Humanos , Miocitos Cardíacos , Vía de Señalización Wnt , Factores Despolimerizantes de la Actina , Matriz Extracelular , Neovascularización Patológica , Integrinas
2.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685725

RESUMEN

Mature cardiomyocytes (CMs) obtained from human pluripotent stem cells (hPSCs) have been required for more accurate in vitro modeling of adult-onset cardiac disease and drug discovery. Here, we found that FGF4 and ascorbic acid (AA) induce differentiation of BG01 human embryonic stem cell-cardiogenic mesoderm cells (hESC-CMCs) into mature and ventricular CMs. Co-treatment of BG01 hESC-CMCs with FGF4+AA synergistically induced differentiation into mature and ventricular CMs. FGF4+AA-treated BG01 hESC-CMs robustly released acute myocardial infarction (AMI) biomarkers (cTnI, CK-MB, and myoglobin) into culture medium in response to hypoxic injury. Hypoxia-responsive genes and potential cardiac biomarkers proved in the diagnosis and prognosis of coronary artery diseases were induced in FGF4+AA-treated BG01 hESC-CMs in response to hypoxia based on transcriptome analyses. This study demonstrates that it is feasible to model hypoxic stress in vitro using hESC-CMs matured by soluble factors.


Asunto(s)
Ácido Ascórbico/farmacología , Diferenciación Celular , Factor 4 de Crecimiento de Fibroblastos/farmacología , Células Madre Embrionarias Humanas/patología , Modelos Biológicos , Miocitos Cardíacos/patología , Estrés Fisiológico , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Medios de Cultivo/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ventrículos Cardíacos/patología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/genética
3.
Biomaterials ; 278: 121133, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34571434

RESUMEN

The generation of mature ventricular cardiomyocytes (CMs) resembling adult CMs from human pluripotent stem cells (hPSCs) is necessary for disease modeling and drug discovery. To investigate the effect of self-organizing capacity on the generation of mature cardiac organoids (COs), we generated cardiac mesoderm cell-derived COs (CMC-COs) and CM-derived COs (CM-COs) and evaluated COs. CMC-COs exhibited more organized sarcomere structures and mitochondria, well-arranged t-tubule structures, and evenly distributed intercalated discs. Increased expressions of ventricular CM, cardiac metabolic, t-tubule formation, K+ ion channel, and junctional markers were confirmed in CMC-COs. Mature ventricular-like function such as faster motion vector speed, decreased beats per min, increased peak-to-peak duration, and prolonged APD50 and APD90 were observed in CMC-COs. Transcriptional profiling revealed that extracellular matrix-integrin, focal adhesion, and LEFTY-PITX2 signaling pathways are upregulated in CMC-COs. LEFTY knockdown affected ECM-integrin-FA signaling pathways in CMC-COs. Here, we found that high self-organizing capacity of CMCs is critical for the generation of mature and ventricular COs. We also demonstrated that LEFTY-PITX2 signaling plays key roles for CM maturation and specification into ventricular-like CM subtype in CMC-COs. CMC-COs are an attractive resource for disease modeling and drug discovery.


Asunto(s)
Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas , Factores de Determinación Derecha-Izquierda , Miocitos Cardíacos , Células Madre Pluripotentes , Factores de Transcripción , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Determinación Derecha-Izquierda/metabolismo , Mesodermo , Organoides , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
4.
Biofabrication ; 13(4)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34404035

RESUMEN

A novel tissue engineering strategy using 3D bio-print technology has become a promising therapeutic method for acute myocardial infarction (AMI) in an animal model. However, the application of 3D bio-printed tissue remains limited due to poor graft survival. Therefore, it is a scientific priority to enhance graft survival by precisely adjusting the 3D environment of encapsulated cells. In this study, novel transplantable 3D cardiac mesh (cMesh) tissue with a porous mesh structure was presented using human cardiomyocytes, human cardiac fibroblasts, and gelatin-methacryloyl-collagen hydrogel. Cardiomyocytes and cardiac fibroblasts were well spreaded. The cardiomyocytes were connected with a gap junction channel in bio-printed cMesh and a 3D cardiac patch with an aggregated structure. Porous cMesh demonstrated structural advantages by increased phosphorylation of mTOR, AKT, and ERK signals associated with cell survival. Transplanted cMesh in rats with AMI improved long-term graft survival, vessel formation, and stabilization, reduced fibrosis, increased left ventricle thickness, and enhanced cardiac function. Our results suggest that porous cMesh provides structural advantages and a positive therapeutic effect in an AMI animal model.


Asunto(s)
Infarto del Miocardio , Mallas Quirúrgicas , Animales , Gelatina , Hidrogeles , Infarto del Miocardio/terapia , Miocitos Cardíacos , Impresión Tridimensional , Ratas , Ingeniería de Tejidos
5.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245208

RESUMEN

Thymosin ß4 (Tß4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with Tß4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with Tß4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, Tß4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with Tß4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with Tß4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the Tß4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with Tß4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with Tß4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia.


Asunto(s)
Miembro Posterior/metabolismo , Isquemia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Timosina/metabolismo , Timosina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Trasplante de Células , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/genética , Isquemia/terapia , Sistema de Señalización de MAP Quinasas/genética , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Desnudos , Neovascularización Fisiológica/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Timosina/genética , Timosina/uso terapéutico , Cicatrización de Heridas/genética
6.
Sci Rep ; 9(1): 7272, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086227

RESUMEN

Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120-200 nm; HP2, 200-280 nm; HP3, 280-360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200-280 nm-sized holes.


Asunto(s)
Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Leucocitos/metabolismo , Membrana Basal/metabolismo , Western Blotting , Citocinas/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Etiquetado Corte-Fin in Situ , Nanoporos/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA